
The Design of Slow-Motion Feedback

Jo Vermeulen, Kris Luyten, Karin Coninx

Hasselt University – tUL – iMinds

Expertise Centre for Digital Media

Diepenbeek, Belgium

firstname.lastname@uhasselt.be

Nicolai Marquardt

University College London

UCL Interaction Centre

London, UK

n.marquardt@ucl.ac.uk

ABSTRACT

The misalignment between the timeframe of systems and

that of their users can cause problems, especially when the

system relies on implicit interaction. It makes it hard for

users to understand what is happening and leaves them little

chance to intervene. This paper introduces the design

concept of slow-motion feedback, which can help to

address this issue. A definition is provided, together with an

overview of existing applications of this technique.

Author Keywords

Design; implicit interaction; slow-motion; feedback.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

INTRODUCTION

There is a large potential for miscommunication between

users and systems in implicit interaction — where the

system takes actions based on implicit input that often

occur beneath the user’s radar [3,6]. These issues can lead

to unintended actions, undesirable results and difficulties in

detecting or correcting mistakes [6]. Indeed, before users

can intervene, they must first understand what the system is

trying to do [9].

Moreover, computers can take action in a fraction of a

second, much faster than we humans are able to notice. This

only further exacerbates the challenge of providing

feedback in implicit interaction, as the user’s implicit input

could trigger thousands of system actions before they would

even be aware of having interacted with the system. There

is a thus a misalignment between the system’s timeframe

and the user’s timeframe, as rightly argued by Bellotti et al.

[3] in their paper on the challenges of sensing systems.

In this paper, we introduce the design concept of slow-

motion feedback. Just as we would speak slowly when

explaining something to a small child, computer systems

could also slow down to make sure that their users

understand them properly. By slowing down, users are also

given time to notice what is happening and intervene, if

necessary.

A well-known example of slow-motion feedback is Gmail’s

‘undo send’ feature that provides users with a configurable

5 to 30-second window to undo sending out an email

(which is technically impossible). While Gmail shows

feedback to the user informing them about the sent email,

the actual sending of the email is delayed to allow users to

cancel the action in progress. While slow-motion feedback

is mainly used for safety reasons in this situation, it has

several applications to improve awareness and prevent

mistakes in implicit interaction, as we will discuss later.

Our contributions in this paper are twofold:

 We introduce a design space to reason about the

time at which feedback is provided and use this

framework to define slow-motion feedback;

 We give an overview of notable existing

applications of slow-motion feedback and discuss

its potential for improving awareness and

providing opportunities for control in implicit

interaction.

DESIGN SPACE

In order to come to a definition of slow-motion feedback,

we present a design space that allows us to reason about the

different possibilities about how and when information

about the result of an action can be provided. The design

space consists of two different dimensions: the level of

detail about the result of an action, and the time at which

the information is provided (Figure 1).

Figure 1: The design space for when and how information

about the result of an action can be provided. These axes (time

and level of detail) apply to the rest of the figures in the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org.

DIS '14, June 21 - 25 2014, Vancouver, BC, Canada

Copyright is held by the owner/author(s). Publication rights licensed to

ACM. ACM 978-1-4503-2902-6/14/06…$15.00.
http://dx.doi.org/10.1145/2598510.2598604 ACM

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2598510.2598604

We consider both explicit actions initiated by the user, as

well as actions initiated by the system that are planned

routine tasks (e.g., auto-save in a word processor) and

actions based on implicit input (e.g., a public display that

reacts to a user’s presence). There are two important events

that we consider for actions: when they start, and when they

are completed.

Time (t): The time dimension represents the time at which

events occur, such as the start of an action, or when

information is shown to the user. It consists of all moments

in time that are relevant to the interaction. Again, we define

two key moments: at time t0, the action is started (either by

the user or the system); and at time t1, the action has been

completed by the system.

Level of detail (d): This dimension represents how much

information the user receives about the result of their

action. While this dimension is hard to quantify and tends

to be discrete, we define two important values for this

dimension: d0 and d1. The level d0 signifies the situation in

which the user does not receive any information at all about

the result of their action. At level d1, on the contrary, the

user receives complete information about the result of the

action.

Origin and shape of the curve: We define the origin of the

graph as (t0, d0); when the action starts and no information

is provided yet. The curve’s shape illustrates how

information is revealed (non-continuously or continuously),

how much information is provided and when, and whether

the user has time to intervene.

From these basic definitions, we can derive a number of

key regions:

 t ≥ t1: the time period after the action

 t ≤ t0: the time period before the action

 t0 ≤ t ≤ t1: the time period during the action

 t1 – t0: the amount of time available to the user to

intervene, e.g., to cancel an unwanted action or

correct the system. Note that the user must be

aware that the action is taking place (d > d0).

Feedback Patterns Covered by the Design Space

We illustrate the different regions in the design space with a

number of common feedback patterns.

After the Action: Only Feedback

In graphical user interfaces (GUIs), information about the

result of an action is typically only provided after the action

has been completed, or in other words when t ≥ t1, as shown

in Figure 2 (left). In this specific situation, information is

provided in full detail (d = d1).

Even though the action might take some time to complete

(i.e., t1 – t0 > 0), users can only intervene when they have

information about what is happening. If no information is

provided before the action has been completed (d = d0),

users have no way to prevent the action from occurring. A

typical solution offered by GUIs is to allow users to revert

back to a previous state, e.g., via an undo command. This

strategy is only suitable when users explicitly trigger

actions. It would be cumbersome in implicit interaction,

where users might get frustrated of repeatedly attempting to

correct unwanted behavior.

There are different options regarding the duration of

feedback, as shown in Figure 2 (right). Feedback can be an

inherent part of the user’s ongoing task, and will then

remain visible (e.g., text that has been added to a

document), which is the case in Figure 2 (left). Other kinds

of feedback might be temporary and disappear quite

quickly, such as subtle notifications when a word processor

has auto-corrected a word. Note also that in this case, the

provided information is not complete (d0 ≤ d ≤ d1), but can

be sufficient for the user. Not all notifications are temporary

though, some might also be important enough to remain

visible until the user deals with them (e.g., notifications

about software security updates).

During the Action: Intermediate Feedback

Another typical pattern is showing information during the

execution of the action (t0 ≤ t ≤ t1). This allows users to

keep an eye on what is happening and to intervene if

necessary. This type of feedback is commonly used for

long-running tasks to inform users about the current state of

the system. While several curve shapes are possible, the

level of detail is commonly increased incrementally, as

shown in Figure 3 (left).

Typical examples of incremental feedback are applications

that allow users to preview results while they are being

processed. When loading a webpage, for example, users can

already see partial content coming in (e.g., the general

layout, text, and images) before the webpage is fully

loaded. Should the user suddenly realize that this was not

the webpage they were looking for, they can easily go back,

Figure 2: Feedback (left) and different options for the

duration of feedback (right).

Figure 3: Intermediate feedback: incremental (left) and

continuous (right).

without having to wait for the entire page to be loaded. An

example of continuous intermediate feedback, is the

OctoPocus gesture guide [1]. When users perform a gesture,

it continually updates the possible remaining gesture paths.

Before the Action: Previews

Information about the result of an action can also be

provided before the action has been started (t < t0), as

shown in Figure 4. Users are essentially given a glimpse

into the future, which can be useful to help them in

choosing the right action [8]. This information could remain

visible or disappear once the action is being executed.

A typical example of this is a preview. Microsoft Word, for

example, shows the result of changing the font color of a

selection when the user hovers over the different color

buttons. Although one can argue over when an action

actually starts in this case (when the user hovers over a

button or when she clicks it?), the user still has to confirm

the action before it is executed by the system. Any

information provided before executing the action, is

considered to be on the left side of the time axis (t < t0).

DEFINING SLOW-MOTION FEEDBACK

We can define slow-motion feedback using the previous

design space. It is clear that slow-motion feedback does not

make sense for long running tasks, i.e., when the duration

of an action is long enough so that the user has the

opportunity to react (e.g., loading a webpage over a slow

connection).

Slow-motion feedback amplifies the time difference

between t1 and t0 (t1 – t0) or the duration of an action in the

user’s timeframe, as shown in Figure 5. The system’s

response to the user’s action is postponed by delaying t1 to

t2 (t1 → t2) so that users have ample time to notice that the

action is occurring and the option to intervene. The

available time to notice that the action is happening is t2 – tx

for a certain time t0 ≤ tx ≤ t2 where information is being

provided to the user (in other words: (t2 – tx) for (tx, dy)

where t0 ≤ tx ≤ t2 and dy > d0). Designers could rely on

animations [4] to transition between tx and t2, such as slow-

in/slow-out to improve motion predictability [5]. Note that

tx = t0 in Figure 5.

APPLICATIONS OF SLOW-MOTION FEEDBACK

In what follows, we demonstrate a number of notable

successful applications of slow-motion feedback.

Emphasizing Change

Phosphor by Baudisch et al. [2] visually augments GUI

widgets to emphasize changes in the interface and leave a

trail to show users (in retrospect) what just happened.

Phosphor increases the already existing feedback’s level of

detail (an increase in d) and the time that it is shown to the

user (an increase in t), as illustrated in Figure 6.

System Demonstration

Ju et al.’s electronic whiteboard [6] uses slow-motion

feedback to transition between an ambient display mode

and a whiteboard based on the user’s distance to the

display. It shows an animation moving all content from the

center of the board to the sides when a user steps closer.

This happens slowly enough so that users both notice it, and

have the time to react if it was not what they wanted (Figure

7). Users can override the automatic action of making space

by grabbing content and pulling it back to the center. When

users see an action being executed slowly (in this case:

content that is moving to the side of the display), users can

already predict what will happen and override the system’s

action before they have complete information at their

disposal.

Progressive Feedback

Marquardt et al.’s gradual engagement design pattern for

proxemic interactions [7] uses proximity to facilitate

information exchange between devices. It is comprised of

three stages in which more information is shown as the

user’s engagement with the system increases (e.g., by

approaching a device). Marquardt et al. [7] assume that

users will approach or orient themselves towards a device

when they are interested in interacting with it.

An interesting feature here is that users control the speed at

which information is revealed. The faster users approach a

device, the faster information is shown, which realigns the

system’s timeframe with their own (Figure 7). In this case,

the natural hesitation of novices and the rapid approach of

experts might have exactly the intended consequences.

Figure 6: Phosphor increases both the level of detail and time.

Figure 5: Slow-motion feedback amplifies the time to

intervene by showing feedback until t2 instead of t1.

Figure 4: Previews show information before t0.

Visualizing Causality

Slow-motion feedback can also be used to improve the

understanding of causality. Vermeulen et al. [9] visualize

the inner workings of different sensors and devices in a

smart environment by projecting animated lines into the

environment that connect them when events and actions are

triggered. In one of their scenarios, a motion sensor causes

a light to be turned on. The system’s action (turning on the

lights) is slowed down here and timed to exactly coincide

with the moment in time at which the animated line that

started from the motion sensor reaches the light (Figure 8

left). Again, this allows users to override the system action.

Postponed Feedback

Ju et al. [6] have also applied another strategy for slow-

motion feedback. Their electronic whiteboard performs

automatic stroke clustering in the background while the

user is drawing. The system provides feedback about the

clusters by surrounding strokes in dotted light-gray

bounding boxes. However, to avoid interrupting users while

they are drawing, this feedback is only shown when the

user steps back. When users notice a misclustering, they

can override the system’s action by redrawing the outline.

The interesting aspect of this approach is that the action and

feedback cycle is shifted into the future (Figure 8 right).

Instead of increasing the time between start and end of the

action, users are only made aware of the action when they

can be interrupted (t2), similar to attentive interfaces [10].

DISCUSSION

Designing systems that rely on implicit interaction remains

challenging. We feel that slow-motion feedback is a

promising technique to increase awareness of system

actions and to provide users with more opportunities for

control.

However, there are also a number of implications of

applying this technique. An open issue is how slow-motion

feedback can be applied to time-critical tasks, as it might

have a negative effect on the overall task completion time.

While this will be negligible in most cases, when applied to

several sequential micro-interactions, the cumulative effect

over time might be too large to ignore.

In addition, more work is needed to take into account

diverse groups of users. If the speed of slow-motion

feedback is fixed for all users, there will be situations in

which the provisioning of feedback will be either too slow

(e.g., for experts) or too fast (e.g., for novice users). We see

the biggest potential in approaches that allow the user to

control the speed at which information is provided.

ACKNOWLEDGEMENTS

This paper was inspired by discussions at the Dagstuhl

Seminar on Proxemics in HCI (#13452).

REFERENCES

1. Bau, O. and Mackay, W.E. OctoPocus: a dynamic

guide for learning gesture-based command sets. Proc.

UIST ’08, ACM (2008), 37–46.

2. Baudisch, P., Tan, D., Collomb, M., et al. Phosphor:

Explaining Transitions in the User Interface Using

Afterglow Effects. Proc. UIST ’06, ACM (2006), 169–

178.

3. Bellotti, V., Back, M., Edwards, W.K., Grinter, R.E.,

Henderson, A., and Lopes, C. Making sense of sensing

systems: five questions for designers and researchers.

Proc. CHI ’02, ACM (2002), 415–422.

4. Chang, B.-W. and Ungar, D. Animation: From

Cartoons to the User Interface. Proc. UIST ’93, ACM

(1993), 45–55.

5. Dragicevic, P., Bezerianos, A., Javed, W., Elmqvist,

N., and Fekete, J.-D. Temporal Distortion for

Animated Transitions. Proc. CHI ’11, ACM (2011),

2009–2018.

6. Ju, Lee, and Klemmer. Range: exploring implicit

interaction through electronic whiteboard design. Proc.

CSCW ’08, ACM (2008), 17–26.

7. Marquardt, N., Ballendat, T., Boring, S., Greenberg,

S., and Hinckley, K. Gradual Engagement: Facilitating

Information Exchange Between Digital Devices As a

Function of Proximity. Proc. ITS ’12, ACM (2012),

31–40.

8. Vermeulen, J., Luyten, K., van den Hoven, E., and

Coninx, K. Crossing the Bridge over Norman’s Gulf of

Execution: Revealing Feedforward’s True Identity.

Proc. CHI ’13, ACM (2013), 1931–1940.

9. Vermeulen, J., Slenders, J., Luyten, K., and Coninx, K.

I Bet You Look Good on the Wall: Making the

Invisible Computer Visible. Proc. AmI ’09, Springer-

Verlag (2009), 196–205.

10. Vertegaal, R. Introduction to the Special Issue on

Attentive User Interfaces. Commun. ACM 46, 3 (2003),

30–33.

Figure 8: Left: Using slow-motion feedback to visualize

causality. Right: Postponed feedback, which is only shown

after t2, even though the action was already completed at t1.

Figure 7: System demonstration uses slow-motion feedback to

allow users to intervene. Progressive feedback gives users

control over the speed at which information is revealed.

The columns on the last page should be of approximately equal length.
Remove these two lines from your final version.

