
Cooperative Media Lab

Sens-ation Sensor Infrastructure
Developer Documentation

Bauhaus University Weimar

Computer Supported Cooperative Work

Prof. Dr. Tom Gross, Dipl.-Inf. Tareg Egla

Andrea Lahn,

Nicolai Marquardt,

Matthias Pfaff,

Christian Semisch

2004/2005

Abstract:

Sens-ation is a client-server infrastructure for providing sensor information to var-
ious clients. With the platform you can implement software applications that can
react in dependence on the discovered environment. An example for this scenario
is a desktop application that automatically starts your web browser and email
client when it has detected that you are in your office.
A major feature of the server infrastructure is providing simultaneous access to
sensor information and a common interface for all registered sensor modules. New
sensors, hardware modules and locations can be easily registered with the use
of XML descriptions. For the notification of new sensor events, the server pro-
vides miscellaneous interfaces, e.g. XML transmission with XML-RPC, sockets
and HTTP connections as well as a PHP user interface. For the aggregation and
interpretation of sensor values, high level services can be integrated as software
modules into the infrastructure.
Furthermore we have implemented different example clients for desktop hardware
and mobile devices. The clients are implemented in Java as well as AppleScript
(Apple scripting language), PHP and J2ME for the mobile client.

Contents

1. Introduction 8
1.1. What is ”Sens-ation” . 8
1.2. Features of the Platform . 9

2. Developer Notes 11
2.1. Code Conventions . 11
2.2. Development Tools . 11
2.3. Overview of the Packages . 12
2.4. Libraries . 13
2.5. Distribution . 15

3. Installation 16
3.1. Requirements . 16
3.2. Installation of Required Components 17

3.2.1. Apple Mac OS X . 17
3.2.2. Microsoft Windows . 20

3.3. Installation of the Server . 21
3.3.1. Apple Mac OS X, UNIX . 21
3.3.2. Microsoft Windows . 22
3.3.3. Properties File . 23

3.4. Installation of Optional Packages 24
3.4.1. Database . 24
3.4.2. AXIS Gateway . 25
3.4.3. PHP Gateway . 27
3.4.4. ESB Sensor Adapter . 29

4. Server Architecture 31
4.1. Modules . 31
4.2. Utility Classes . 31
4.3. Console Interaction . 33
4.4. GatewayHandler . 35

3

Contents

5. Sensors, Values, Locations and Adapter Modules 40
5.1. SensorHandler . 40
5.2. Sensors . 41
5.3. Sensor Values . 42
5.4. Locations . 44
5.5. Notification . 44
5.6. Sensor Types . 45
5.7. XML Descriptions . 46
5.8. Integrate new Sensors . 47
5.9. Adapter Modules . 48

5.9.1. ESB XML-RPC Adapter . 48
5.9.2. ESB Communication Parser 48

6. Services 50
6.1. Concept of Services . 50
6.2. ServiceHandler Module . 53
6.3. Development of Services in General 53
6.4. Example Service: Interpreter . 54

7. Database 57
7.1. Using JDBC . 57
7.2. Database Structure . 58
7.3. Implementation . 61

7.3.1. Database Package . 61
7.3.2. Special Methods . 62

8. Gateways 68
8.1. Web Services . 68

8.1.1. XML-RPC . 68
8.1.2. Gateway XML-RPC . 69
8.1.3. AXIS . 71
8.1.4. Gateway AXIS . 72
8.1.5. Functionality of the XML-RPC- and AXIS Gateway 73

8.2. PHP . 74
8.2.1. Server Connection . 76
8.2.2. CSV Data and Excel Import 79
8.2.3. Mobile Portal . 81

8.3. HTML . 81

4

Contents

9. Clients 85
9.1. XML-RPC . 85
9.2. AXIS . 86
9.3. Moving Awareness . 86
9.4. Chart . 88
9.5. AppleScript . 88

9.5.1. Notification Service . 88
9.5.2. XML-RPC Connection . 89
9.5.3. Scripting Applications . 90

9.6. Clients: Mobile Client . 91
9.6.1. Introduction . 91
9.6.2. Installation . 91
9.6.3. Description of the MIDlet 93
9.6.4. Handling of different Connections 100

10.Scenarios of using Sens-ation 115
10.1. Adding new sensors and locations 115
10.2. Development of a Software Sensor Adapter 117

11.Limitations and Future Work 119
11.1. Known Bugs and Limitations . 119
11.2. Future Work . 120

A. Appendix 123
A.1. XML Files . 123

A.1.1. sensors.xml . 123
A.1.2. services.xml . 124
A.1.3. locations.xml . 124

A.2. Properties Files . 125
A.2.1. server.properties . 125
A.2.2. gatewayxmlrpc.properties 128

5

List of Figures

1.1. The Sens-ation infrastructure overview 8

3.1. The MAMP server startup panel 18
3.2. Sens-ation server started, console window 23
3.3. AXIS gateway installed properly . 27
3.4. HTDOCS directory of the MAMP server 28
3.5. PHP configuration file config.inc.php 29

4.1. The Sens-ation infrastructure architecture details 32

6.1. The service architecture: Interpretation and aggregation of sensor
values . 50

6.2. Four types of operators [Chen & Kotz 2002] 51
6.3. Methods for sensor data interpretation [Chen & Kotz 2002] 52
6.4. Example operator graph [Chen & Kotz 2002] 52

7.1. Location table . 59
7.2. Sensor table . 59
7.3. Sensor value table . 59
7.4. User table . 60
7.5. User subscribe table . 60
7.6. Axis event table . 60
7.7. Average sensor value table . 61
7.8. Uncompressed database table . 64
7.9. Compressed database table . 64

8.1. PHP admin tool: Login window (left) and main menu (right) 75
8.2. PHP admin tool: Register location form (left) and result page (right) 77
8.3. PHP admin tool: Register sensor form (left) and event notification

form (right) . 78
8.4. PHP admin tool: Sensor value access, select location (left) and the

desired sensor from the list (right) 79

6

List of Figures

8.5. Excel CSV import: CSV import assistant dialog (left) and the data
format dialog (right) . 80

8.6. Excel graph visualization: The graph type dialog (left) and the
finished graph (right) . 81

8.7. Excel graph visualization: Temperature variation (overview on the
top, detail view on the bottom) . 82

8.8. Excel graph visualization: Movement detection sensor, three graph
variations . 83

8.9. Mobile portal: start page (left), client menu (centre) and sensor
menu (right) . 83

8.10. Mobile portal: sensor value access (left), remote control (centre)
and sensor notification form (right) 84

9.1. The XML-RPC client GUI . 86
9.2. The AXIS client GUI . 87
9.3. AppleScript notification service . 89
9.4. Infrastructure of the mobile client. 94
9.5. Startscreen of the program. 95
9.6. The Programmenu. 96
9.7. 1. The last update, 2. The available locations, 3. The available

sensors for this location, 4. The sensorinfo. 97
9.8. In this screen, the time is set. 99
9.9. The animated waitscreen. 104
9.10. Errormessage and Infomessage. 105
9.11. This program informs the user about a needed update. 106
9.12. The Registerscreen. 107
9.13. The Publishscreen. 108
9.14. The visualization of the given sensor values. 1. and 2. The simple

sensor request, 3. Get awareness. 111

7

1. Introduction

1.1. What is ”Sens-ation”

��������	�
�����������

������

�������
����	

�
�
���
��

������

������	
 ������

�
�
���
��

�������
����	

������
����	

�������
����	

������
����	

�	���
������

�	����

�	�����
������

�������

� �
�	�

!���

����	
!�����

������
!�����

"���#���
����$�

"���#���%
����	
&�����

� ��������
'�"�

�������

�	�����
������

!���!���(
'��

���
�)����

*��+	�

�!�
,	�����������
-.�

� ��
���
�����$��

�
�
���
��

�
�
���
��

��������(
�����	�
"���

�!�
�����
/������

������
����	

����	�(
����	�0���(
!��+��(
�	����	��

�������

Figure 1.1.: The Sens-ation infrastructure overview

The Sens-ation Sensor Infrastructure was one of the CML
[Cooperative Media Lab Website] research projects in the winter term 2004/2005.
With our client-server infrastructure Sens-ation you can implement software
tools that react in dependence on the discovered environment. The Sens-ation
server provides many different interfaces for clients to access the values of sensors
connected to the infrastructure. A variety of sensors can connect to the server by
implementing a sensor adapter class.

8

1. Introduction

For sensor access it is necessary to protect the sensor hardware from simultaneous
access by multiple clients. The solution of this problem is the SensorHandler

module (chapter 5.1) as virtual interface. The SensorHandler is a kind of buffer
between the client and used sensor modules, which accumulate and stores sensor
information in a database. The gateway modules (chapter 8.1 and 8.2) then
provide on the server side a common interface for clients to access all sensor values
they need.
A major feature of the server infrastructure is providing simultaneous access to
sensor information and a common interface for all registered sensor modules. The
sensor adapters (see chapter 5.9) encapsulate and hide all specific implementation
details of the hardware (see figure 1.1). New sensors, hardware modules and
locations can be easily registered with the use of XML descriptions. And for
the notification of new sensor events, the adapter modules provide miscellaneous
interfaces, e.g. XML transmission with XML-RPC, sockets or HTTP connections.
Beyond the real sensor hardware (current temperature, light intensity or move-
ment) there can be integrated more abstract sensors (mobile sensor, messenger
awareness, etc.) as well.
Clients can connect via different gateways: XML-RPC, AXIS Web Services
(SOAP), sockets or HTTP connections (chapter 8.1 and 8.2). The clients can
communicate in two different ways with the server: they can either connect just
for a single value of a sensor or a collection of sensor values, or they register
themselves to be notified when events of the specified sensor occur.
For the aggregation and interpretation of sensor values, high level services
(chapter 6) can be integrated as software modules into the infrastructure. These
services can for example calculate a variety of heuristics from current and saved
sensor information. The heuristically calculated values will then also be available
through our public service interface.
Furthermore we have implemented different example clients for desktop hardware
and mobile devices. These clients demonstrate the easy implementation of
client access to the saved sensor values provided by the central server. We have
implemented these clients in Java (chapter 9) as well as AppleScript (Apple
scripting language, see chapter 9.5), PHP (chapter 8.2) and J2ME for the mobile
client (chapter 9.6).

1.2. Features of the Platform

• Easy integration of sensors:
Connect new sensor modules via adapters: section 5.8 and 5.9.

9

1. Introduction

• Various interfaces for clients:
Clients can choose between various access gateways: Thick clients can use e.g.
the AXIS/SOAP gateway, scripting languages like AppleScript the XML-
RPC gateway, mobile applications the HTML/PHP interface or the client
choose the socket TCP/IP gateway: chapter 8.1 and 8.2.

• XML descriptions:
The sensors, locations, sensor types, hardware modules and sensor values are
described in XML format. Dynamic XML parser and writer modules enable
the easy import and export of the XML descriptions.

• Push and pull technology:
Clients can use the pull technology to contact the server to request sensor
values or they subscribe themselves for specific sensors or sensor types (push
technology).

• Flexible exploration and access methods:
Various methods for data access: clients can access values in XML format,
as string, hashtable, vector etc.

• Intelligent database:
The database storage logic has some filters and algorithms to reduce the
amount of data: chapter 7.

• PHP admin interface:
Register new sensors, access sensor values or get CSV file of time series of
sensor events: chapter 8.2.

• Example clients:
We have developed example clients for various platforms: Java, AppleScript
and J2ME (cell phones): chapter 9.

10

2. Developer Notes

2.1. Code Conventions

In general we comply with the Java Code Conventions of Sun Microsystems
[Java Code Conventions]. These code conventions covers file organization, com-
ments, declarations, statements, naming conventions, programming practices and
includes some code examples. We have added many code comments inside
the source files to explain the complex sections inside the classes (JavaDoc
standard, see [Javadoc Reference]). You can find the Sens-ation JavaDoc at
[Sens-ation Javadoc]. In the header of each class file you see a short overview
about the main tasks of the class.

2.2. Development Tools

For the development we use the Eclipse IDE [Eclipse Foundation] (Version 3.1
M2). This IDE is a open source project of the Eclipse Foundation and beyond the
intuitive user interface there exists many plug-in tools to enhance the standard
editor.
We recommend the following tools when developing classes for the Sens-ation
server:

1. EclipsePHP:
Integrated PHP source editor, a HTML preview window and more func-
tionality for the PHP web development. Download the latest release at:
http://sourceforge.net/projects/phpeclipse/. We recommend to use
the release PHPEclipse1.1.2-2004-12-04.

2. EclipseME:
Plug-in for development with the Java 2 Micro Edition (J2ME), website

11

http://sourceforge.net/projects/phpeclipse/

2. Developer Notes

at http://eclipseme.sourceforge.net/. MIDlet suite creation, mobile
packages, JAD file editor, JAR file packaging and other J2ME development
tools.

3. Wireless Toolkit (version 2.x):
A stand-alone state-of-the-art toolbox for developing wireless applica-
tions, which contains additional libraries and which can be integrated into
Eclipse. Informations and download at http://java.sun.com/products/

j2mewtoolkit/. Please check http://eclipseme.sourceforge.net/docs/

installation.html for more installation notes.

4. For Tomcat:
For Tomcat the Sysdeo plugin http://www.sysdeo.com/eclipse/

tomcatPluginV3.zip is recommended. It can start and stop Tomcat and
print the Tomcat log data to the Eclipse console. However, due to version
registrations, it will only work with Eclipse 3.0.

5. For AXIS:
Various AXIS plugins for Eclipse exist, some integrated into bigger webser-
vice plugins like JBoss and some smaller seperately working versions, like
Andres Aguiar’s plugin. However, in this project we used due to compati-
bility problems the command line version of AXIS.

2.3. Overview of the Packages

• de.buw.medien.cscw.sensation.server

This package contains the main server classes and the handler classes. There
are also the sensor, location and sensortype files as well as some server utility
classes.

• de.buw.medien.cscw.sensation.server.hardware

The abstract hardware class is used for bidirectional sensor adapter com-
munication. The other files of this package are for the hardware module
description.

• de.buw.medien.cscw.sensation.server.services

Services are classes for abstract interpretations of sensor values. A service
implementation extends the abstract service class included in this package.

12

http://eclipseme.sourceforge.net/
http://java.sun.com/products/j2mewtoolkit/
http://java.sun.com/products/j2mewtoolkit/
http://eclipseme.sourceforge.net/docs/installation.html
http://eclipseme.sourceforge.net/docs/installation.html
http://www.sysdeo.com/eclipse/tomcatPluginV3.zip
http://www.sysdeo.com/eclipse/tomcatPluginV3.zip
http://www.purposesolutions.com/Resources/EclipseJ2EE.html
http://www.deklarit.com/download/axiseclipse.zip

2. Developer Notes

• de.buw.medien.cscw.sensation.sensors

Includes the classes for the ESB communication (open connection, transfer
data, execute commands, data collections, string parser).

• de.buw.medien.cscw.sensation.sensors.adapter

The sensor adapter is the connection between hardware sensor modules and
the infrastructure (XML-RPC communication).

• de.buw.medien.cscw.sensation.security

In future releases the package should contain the security classes. At the
moment this is only the MD5 generator class.

• de.buw.medien.cscw.sensation.interfaces

The interface files for the implementation of the observer pattern
[Erich Gamma et al.].

• de.buw.medien.cscw.sensation.database

All classes for the database handling (especially the MySQL database).

• de.buw.medien.cscw.sensation.client.desktop

Client implementations for the desktop environment.

• de.buw.medien.cscw.sensation.client.midlet

MIDlet client for cell phones (for MIDP 1.0).

2.4. Libraries

Overview of the libraries we used (all libraries are located in the /lib directory of
the source root directory):

• JDOM:
Java Document Object Model API. We use this API for XML parsing process
and XML document manipulation as well as the XML string writing. Down-
load and developer documentation at http://www.jdom.org

• MySQL Connector:
MySQL Connector/J [MySQL Connector/J] is the database driver.
It’s necessary for JDBC to get access to the MySQL database

13

http://www.jdom.org

2. Developer Notes

[MySQL Database Website]. This a type 4 JDBC driver, that means the
driver is completely in Java implemented and communicate directly with the
database server. This is the driver with the best performance.

• JFreeChart:
JFreechart is a library that helps displaying various kinds of charts.
It’s used in the chart client to display notified events. It can
be downloaded at http://prdownloads.sourceforge.net/jfreechart/

jfreechart-0.9.21.zip?download. It is recommended for rapid develop-
ment of graphical desktop clients without spending too much time with the
implementation of visualizations.

• XML-RPC:
XML-RPC is a library for instantiating clients and servers for ac-
cessing methods over a distance by remote calls. In this framework
the Apache XML-RPC 1.1 implementation is used http://archive.

apache.org/dist/ws/xmlrpc/v1.1/xmlrpc-1.1.zip. The source at the
location http://archive.apache.org/dist/ws/xmlrpc/v1.1/xmlrpc-1.

1-src.zip is modified by an authentication patch at the URL http://www.

nighttale.net/OpenSource/download/xmlrpc-authenticated.patch.

• kXML-RPC:
kXML-RPC is a J2ME implementation of the XML-RPC protocol with an
extremely lightweight mechanism for exchanging data and invoking web ser-
vices in a neutral, standardized XML format (http://kxmlrpc.objectweb.
org/software/downloads/index.html).

• AXIS
AXIS is a webserver library, which works with the Apache Tomcat webserver
application, but also with any other Java webserver application. It uses its
own version of XML-RPC to communicate as well as an XML coding for
interoperationally transferring data. The webserver is created using func-
tions contained in the AXIS libraries. Learn more at 8.1.3 and at the AXIS
webpage at http://ws.apache.org/axis/news.html.

14

http://prdownloads.sourceforge.net/jfreechart/jfreechart-0.9.21.zip?download
http://prdownloads.sourceforge.net/jfreechart/jfreechart-0.9.21.zip?download
http://archive.apache.org/dist/ws/xmlrpc/v1.1/xmlrpc-1.1.zip
http://archive.apache.org/dist/ws/xmlrpc/v1.1/xmlrpc-1.1.zip
http://archive.apache.org/dist/ws/xmlrpc/v1.1/xmlrpc-1.1-src.zip
http://archive.apache.org/dist/ws/xmlrpc/v1.1/xmlrpc-1.1-src.zip
http://www.nighttale.net/OpenSource/download/xmlrpc-authenticated.patch
http://www.nighttale.net/OpenSource/download/xmlrpc-authenticated.patch
http://kxmlrpc.objectweb.org/software/downloads/index.html
http://kxmlrpc.objectweb.org/software/downloads/index.html
http://ws.apache.org/axis/news.html

2. Developer Notes

2.5. Distribution

To compile the source code and distribute the project you can use the Java-based
build tool Apache Ant [Apache Ant] with the build.xml file. If you write new
Java classes for the Sens-ation server, please add these files to the ”src.files”
property of the build.xml file.
You can choose one of the following Ant targets:

• compile:
Compile the source files and write them to the /build directory.

• run:
Start the Sens-ation server (depends compile).

• dist:
Create the server.jar file in the /dist directory and copy the properties
and XML files to this directory too. All required Java 3rd-Party libraries
are included in this JAR file. To start the server from commandline just
change the path to the [sensation-source]/dist path and type ”java -jar
server.jar”.

• javadoc:
Create the JavaDoc [Javadoc Reference] HTML pages in the /doc directory.

• clean:
Delete the /build and the /dist directory.

15

3. Installation

The following manual pages guides you through the installation process of the
Sens-ation infrastructure. This package contains various modules: The main
server, three gateway modules and sensor adapters. The latter are optional, but
at least the main server must be installed on your computer system.

3.1. Requirements

For the main server module:

• Operating System: Apple OS X (Version 10.3 or above) or Microsoft
Windows (2000 or above)

• Java Virtual Machine: Sun Java JRE/JDK, Version 1.4.2

If you want to use one of the additional packages, the following packages are
required:

• Database module: MySQL database version 4.1.x or above

• AXIS gateway: Apache Tomcat server version 5.0.x, AXIS distribution
version 1.1

• PHP/HTML gateway: Apache server version 2.x, PHP version 4.3.x

• ESB sensor adapter: Sun Java Communications API, version 2.0 (only
available for Microsoft Windows or SPARC/Solaris). You need this Java
extension to access the COM port and establish the communication with the
Embedded Sensor Board (ESB) hardware.

16

3. Installation

The next section will help you to install the missing components of this list for
your Apple Mac OS or Microsoft Windows System. If you have already installed
all the required components you can skip the following section.
All the required packages are open source software and can be downloaded for free.
Often there are various ways to install the required packages, but we explain one
installation process that we have tested in detail.

3.2. Installation of Required Components

3.2.1. Apple Mac OS X

Java SDK
The Apple Mac OS X operating system has an installed Java Virtual Machine
(JVM) by default. You do not need to install any further Java packages.

Apache server, MySQL database and PHP
Instead of installing all the required components seperately, we suggest to down-
load the MAMP1 installer. This setup will install an Apache server, a MySQL
database and the PHP distribution 4.3.x and 5.x on your OS X system. There are
no conflicts between the Apache server that perhaps already exists on your system
and this new installed server. If you wish to remove this package later, it is only
necessary to delete the [Aplications]/MAMP folder.
To install the MAMP package, open the website http://www.mamp.info/en/

home/, select the download section and load the DMG image file (Source-
forge download site at http://prdownloads.sourceforge.net/mamp/MAMP 1.

0a3.dmg.gz?download). When the download has finished, just open the DMG file
and drag the MAMP folder to the Applications directory of your Mac. When
starting the MAMP control panel (just doubleclick on the MAMP application file),
you can activate and deactivate the apache server and the MySQL database (see
figure 3.1).

If you want to use the graph visualizations of the PHP interface, you also have
to install the Image Graph package of the PEAR project (http://pear.php.net/
package/Image Graph). To install the graph library download the source pack-
age (0.3.0dev4, http://pear.php.net/get/Image Graph-0.3.0dev4.tgz) and

1MAMP = Macintosh Apache MySQL PHP

17

http://www.mamp.info/en/home/
http://www.mamp.info/en/home/
http://prdownloads.sourceforge.net/mamp/MAMP_1.0a3.dmg.gz?download
http://prdownloads.sourceforge.net/mamp/MAMP_1.0a3.dmg.gz?download
http://pear.php.net/package/Image_Graph
http://pear.php.net/package/Image_Graph
http://pear.php.net/get/Image_Graph-0.3.0dev4.tgz

3. Installation

Figure 3.1.: The MAMP server startup panel

extract the files to the [PEAR]/Image/Graph/ directory. See the PEAR website
(pear.php.net) for more information about installing the PEAR packages.

Apache AXIS and Tomcat
This installation is only required if you want to use the AXIS Gateway of the
package. Additionally to the server installation, you’ll need the following software.
Download it by clicking on the links.

• Tomcat 5.0.28

• AXIS 1.1

• Xerces 2.5.0

• XStream-1.0.2

• JDOM 1.0

• XML-RPC 1.2b1

Download Tomcat to your desktop, otherwise the quick starting of Tom-
cat with the shellscripts will not function. Download the AXIS 1.1 Final
package and unzip it. Copy the webapps folder from your AXIS folder
to the webapps folder in your Tomcat installation folder. Download the

18

pear.php.net
http://www.artfiles.org/apache.org/jakarta/tomcat-5/v5.0.28/bin/jakarta-tomcat-5.0.2.8.zip
http://mirror.serversuportforum.de/apache/ws/axis/1_1/axis_1_1.zip
http://xml.apache.org.dist/xerces-j/Xerces-J-bin.2.5.0.zip
http://dist.codehaus.org/xstream/jars/xstream-1.0.2.jar
http://www.jdom.org/dist/binary/jdom-1.0.zip
http://www.artfiles.org/apache.org/ws/xmlrpc/v1.2-b1/xmlrpc-1.2-b1

3. Installation

Xerces XML-parser. Copy the xercesImpl.jar, xercesSamples.jar,
xml-apis.jar, xmlParserAPIs.jar from the unzipped Xerces folder to the
axis-1 1/lib folder. Download XStream-1.0.2 and JDOM 1.0 and copy the files
xmlrpc1.2b1.jar,xstream1.0.2.jar and jdom.jar to the axis-1 1/libs folder.
Also add a copy of all files in the axis-1 1/libs folder to the [your Tomcat

folder]/webapps/axis/WEB-INF/lib/ folder . Make sure that all files that are
now in the axis-1 1/libs folder are set in the CLASSPATH environment variable.
You can set the classpath by typing export CLASSPATH=[filetobeadded],
where [filetobeadded] is replaced by the file that you want to add. Also
export the JAVA HOME variable, which should contain the path of your Java JDK
installation. Copy all the libs that are now in the folder to the [your Tomcat

folder]/webapps/axis/WEB-INF/lib/ folder.

Alternatively, take the axislib folder from the package you just down-
loaded and copy it to your desktop. It contains all the needed libraries
that are listed above. Place a copy of all the libs in [your Tomcat

folder]/webapps/axis/WEB-INF/lib/. Make sure that you have rights for
execution of all files that you installed by typing chmod -R 777 * in the Tomcat

folder, else an error will occur telling you that permission of access is denied.
Copy both the axisserver.sh and the axisservershutdown.sh to the desktop.
Edit the entry for DESKTOP PATH to the path your desktop is running on, and the
JAVA HOME entry to your JDK home directory, using your favourite text-editor.
Execute the axisserver.sh file by typing in the terminal in your desktop path
./axisserver.sh. This should add any required libraries to the CLASSPATH,
and start Tomcat. However, also, you will have to add the libs for the whole
session. To do this, just copy and paste the command line instructions from
the axisserver.sh file to your terminal (change the paths as described above
before copying). Otherwise, the deployment of your service will not work, because
the environment variables are deleted after the execution of the shell script. To
shutdown the webserver, just execute the axisservershutdown.sh shellscript.

Java Communication API
The Java Communications API is only available for Microsoft Windows and the
Sparc/Solaris platform. This means, that the Sens-ation adapter for the Embed-
ded Sensor Board (ESB) can not be executed on Mac OS X systems.

19

3. Installation

3.2.2. Microsoft Windows

Java SDK
At the Sun website you can find the Java packages as runtime
edition (JRE) or the development kits (JDK): open the website
http://java.sun.com/j2se/1.4.2/download.html and select the JRE or JDK
download. Accept the licence agreement and select your Operating System
(Windows). Execute the setup programm and follow the guided installation
process. After installation you must reboot your system.

Apache server, MySQL database and PHP
We suggest to download the complete installation package of the XAMPP project.
This package contains all required components for the Sens-ation PHP gateway.
To install the XAMPP package, open the website
http://www.apachefriends.org/en/xampp-windows.html, select the installer
setup (Sourceforge download site) and follow the installation steps of the setup
wizzard.
If you want to use the graph visualizations of the PHP interface, you alos have to
install the Image Graph package of the PEAR project (http://pear.php.net/
package/Image Graph). To install the graph library download the source pack-
age (0.3.0dev4, http://pear.php.net/get/Image Graph-0.3.0dev4.tgz) and
extract the files to the [PEAR]/Image/Graph/ directory. See the PEAR website
(pear.php.net) for more information about installing the PEAR packages.

Apache AXIS and Tomcat
This installation is only required if you want to use the AXIS Gateway of the
package. Additionally to the server installation, you’ll need the following software.
Download it by clicking on the links.

• Tomcat 5.0.28

• AXIS 1.1

• Xerces 2.5.0

• XStream-1.0.2

• JDOM 1.0

• XML-RPC 1.2b1

20

http://java.sun.com/j2se/1.4.2/download.html
http://www.apachefriends.org/en/xampp-windows.html
http://prdownloads.sourceforge.net/xampp/xampp-win32-1.4.11-installer.exe?download
http://pear.php.net/package/Image_Graph
http://pear.php.net/package/Image_Graph
http://pear.php.net/get/Image_Graph-0.3.0dev4.tgz
pear.php.net
http://www.artfiles.org/apache.org/jakarta/tomcat-5/v5.0.28/bin/jakarta-tomcat-5.0.2.8.zip
http://mirror.serversuportforum.de/apache/ws/axis/1_1/axis_1_1.zip
http://xml.apache.org.dist/xerces-j/Xerces-J-bin.2.5.0.zip
http://dist.codehaus.org/xstream/jars/xstream-1.0.2.jar
http://www.jdom.org/dist/binary/jdom-1.0.zip
http://www.artfiles.org/apache.org/ws/xmlrpc/v1.2-b1/xmlrpc-1.2-b1

3. Installation

Download Tomcat 5.0.28. Follow the installation instructions in the installer. Be
sure to delete alle whitespace from the installation path. On the port dialog, type
8080. In the final installation window, uncheck the option of starting the Tomcat
server. Download the AXIS 1.1 Final package and unzip it. Download the Xerces
XML-parser. Copy the xercesImpl.jar, xercesSamples.jar, xml-apis.jar,
xmlParserAPIs.jar from the unzipped xerces folder to the axis-1 1/lib folder.
Copy the webapps folder from your AXIS folder to the webapps folder in your
Tomcat installation folder. Download XML-RPC 1.2b1, XStream-1.0.2 and JDOM

1.0 and copy the files xmlrpc1.2b1.jar,xstream1.0.2.jar and jdom.jar to the
axis-1 1/libs folder. Make sure that all files that are now in the axis-1 1/libs

folder are set in the CLASSPATH environment variable. To put files to an environ-
ment variable, click on Start->System->My Computer->Advanced->Environment

variables->New, and add the name of the variable you want to initialize and the
path of the files you want to include. Copy all libs that are now in the folder to
[your Tomcat folder]/webapps/axis/WEB-INF/lib/.

Alternatively, take the axislib folder from the package you just
downloaded and copy it to your drive C: AND to [your Tomcat

folder]/webapps/axis/WEB-INF/lib/.
Execute the axisinit.bat file that is also in the folder in a console. This should
add any required libraries to the temporary CLASSPATH in your console, enabling
you to deploy AXIS webservices.

Java Communication API
You can download the Java Communication API install package at the web-
site http://java.sun.com/products/javacomm/downloads/index.html and install
the software at your system or you can download the ”ESB adapter” with a bun-
dled JAVA runtime edition from the CML website [Sens-ation Download]. With
this complete package you do not need any further components.

3.3. Installation of the Server

3.3.1. Apple Mac OS X, UNIX

1. Verify that all the required packages (see 3.1) are installed on your system
and if necessary install the missing components (see 3.2.1).

21

http://java.sun.com/products/javacomm/downloads/index.html

3. Installation

2. Download the Sens-ation OS-X binary package from the CML website at
[Sens-ation Download].

3. Extract the compressed ZIP file to the location on your harddrive where
you want to save the server executables.

4. Decide if you want to use the MySQL database or the pre-configured XML
sensor and location descriptions. By default, the database is disabled and
the server will load the descriptions from the XML files instead. If you want
to change this or one of the other settings, see section 3.3.3

5. Start the server: double-click the server.jar file in the Finder window (OS
X) or open a terminal window, change the path to the directory you have
saved the server binary files and there type java -jar server.jar to start
the server.

6. Server console (see figure 3.2): you can see the startup sequence: initial-
ization of the gateway modules, the sensor handler, registration of sensors,
locations and services. When the initialization has finished, you see the server
console prompt. Congratulations! The Sens-ation server is now ready.

3.3.2. Microsoft Windows

1. Verify that all the required packages (see 3.1) are installed on your system
and if necessary install the missing components (see 3.2.2).

2. Download the Sens-ation Windows binary package from the CML website
at [Sens-ation Download].

3. Extract the compressed ZIP file to the location on your harddrive where
you want to save the server executables.

4. Decide if you want to use the MySQL database or the pre-configured XML
sensor and location descriptions. By default, the database is disabled and
the server will load the descriptions from the XML files instead. If you want
to change this or one of the other settings, see section 3.3.3

5. Start the server: double-click the server.exe file in the Windows Explorer or
open system console (Start → Execute... → type ”cmd” and press enter),

22

3. Installation

Figure 3.2.: Sens-ation server started, console window

change the path to the directory you have saved the server binary files and
there type ”server.exe” to start the server.

6. Server console (see figure 3.2): you can see the startup sequence: initial-
ization of the gateway modules, the sensor handler, registration of sensors,
locations and services. When the initialization has finished, you see the
server console prompt. Congratulations! The ”Sens-ation” server is now
ready.

3.3.3. Properties File

The server.properties file is the configuration file for the server and database
module. It is located in the root directory of the extracted server package. Each
configuration variable in the file is annotated to explain the effects when chang-
ing the entry. If you have changed the server.properties file and you want to
restore the original file: delete the server.properties file and rename the file
server.default.properties to server.properties.

23

3. Installation

By default the database is disabled and the server will start without using a data-
base (the internal cache of the server is used instead). To enable the database
open the server.properties file in a texteditor (e.g. TextEdit or Notepad) and
follow the changes in chapter 3.4.1.
The properties file has two main parts: PART A (at the beginning of the file) is
for the main changes to enable the databse usage. PART B is for further changes
of the server configuration. Please read the comments in the config file for more
information about the entries (see chapter A.2.1).

3.4. Installation of Optional Packages

3.4.1. Database

The MySQL database and the server needn’t to be installed on the same computer.
If the computers are connected to each other, it will also work distributed.
Before you can use the database with our framework, you have to do some things:

1. Create a new MySQL accound for the framework. Take care that the user
have the rights for creating a database and tables.

2. Change some entries in the server.properties file:

• Set the property ”server.usedatabase” to true.

• Change the user name and password in this file: ”databse.user” and
”database.password”

• Change the host address of the database in this file: ”database.hostIP”

• Perhaps change the names of the database or tables which will be cre-
ated by our framework.

• If the server at starting up should read the registered location and sen-
sors from the database change the status of ”server.initfromdatabase”
to true.

24

3. Installation

3. Take care, if the database is running, if you want to use it.

3.4.2. AXIS Gateway

Mac OS

1. Start Tomcat with your axisserver.sh shellscript by typing
./axisserver.sh in the terminal in your desktop folder. The entries
in the script file have to be edited, and the CLASSPATH must be set to
function (see 3.2.1). Also, you may start Tomcat by moving to the bin

folder of your Tomcat installation and typing ./startup.

2. Verify the installation of Tomcat and AXIS by opening http://127.0.0.1:

8080/axis/ in your browser . There should be a site telling you that AXIS
is running.

3. Stop Tomcat again, by either typing ./axisservershutdown.sh in the
desktop console or in the bin folder of the Tomcat installation typing
./shutdown.sh

4. Copy the axisserver/ws source package from
the package you just downloaded and copy it to
[yourtomcatfolder]/webapps/axis/WEB INF/classes/(axisserver/ws).

5. Copy the axisserver.properties file to the [yourtomcatfolder]/bin

directory

6. Change the IP of the entry gatewayhandler.ip and gateway.xmlrpc.port

in the axisserver.properties file to the IP and the port of the computer
the GatewayHandler is running on. Change the entries for gatewayaxis.ip
and gatewayaxis.port to the computer on that the AXIS gateway should
be running.

7. Start Tomcat with your axisserver.sh shellscript by typing
./axisserver.sh in the terminal in your desktop folder. The entries
in the script file have to be edited, and the CLASSPATH must be set to
function (see 3.2.1). Also, you may start Tomcat by moving to the bin

folder of your Tomcat installation and typing ./startup.

25

http://127.0.0.1:8080/axis/
http://127.0.0.1:8080/axis/

3. Installation

8. Deploy the service typing java org.apache.axis.client.AdminClient

axisserver/ws/deploy.wsdd in a terminal in the
[yourtomcatfolder]/webapps/axis/WEB-INF/classes. The AXIS
libs must be set in the CLASSPATH to work.

9. Verify the webservice installation by opening
http://127.0.0.1:8080/axis/servlet/AxisServletn your browser to see if
an entry exists labeled ”AxisServer” (See 3.3).

The Sensation AXIS Webserver is now installed and can be reached by the address
http://[Axisserverip]:[TomcatPort]/axis/services/AxisServer.

Microsoft Windows

1. Start Tomcat by either starting the Tomcat Monitor from your Startmenu
(Start->Apache Tomcat 5.0->Monitor Tomcat) and right-clicking on the
Tomcat Monitor in the shortcuts menu, and then clicking Start Service or
double click startup.bat in the bin folder of your Tomcat installation.

2. Verify the installation of Tomcat and AXIS by opening http://127.0.0.1:

8080/axis/ in your browser . There should be a site telling you that AXIS
is running.

3. Stop Tomcat again by either clicking right on the Tomcat Monitor and then
clicking Stop Service or double clicking shutdown.bat in the bin directory
of your Tomcat installation.

4. Copy the axisserver/ws source package from
the package you just downloaded and copy it to
[yourtomcatfolder]/webapps/axis/WEB INF/classes/(axisserver/ws).

5. Copy the axisserver.properties file to the [yourtomcatfolder]/bin

directory

6. Change the IP of the entry gatewayhandler.ip and gateway.xmlrpc.port

in the axisserver.properties file to the IP and the port of the computer
the GatewayHandler is running on. Change the entries for gatewayaxis.ip
and gatewayaxis.port to the computer on that the AXIS gateway should
be running.

26

http://127.0.0.1:8080/axis/
http://127.0.0.1:8080/axis/

3. Installation

7. Start Tomcat by either by right-clicking on the Tomcat Monitor in
the shortcuts menu, and then clicking Start Service or double click
startup.bat in the bin folder of your Tomcat installation.

8. Deploy the service typing java org.apache.axis.client.AdminClient

axisserver/ws/deploy.wsdd in a terminal in the
[yourtomcatfolder]/webapps/axis/WEB-INF/classes. The AXIS
libs must be set in the CLASSPATH to work.

9. Verify the webservice installation by opening http://127.0.0.1:8080/

axis/servlet/AxisServlet in your browser to see if an entry exists labeled
”AxisServer” (See 3.3).

Figure 3.3.: AXIS gateway installed properly

The Sensation AXIS Webserver is now installed and can be reached by the address
http://[Axisserverip]:[TomcatPort]/axis/services/AxisServer.

3.4.3. PHP Gateway

1. The files for the PHP gateway are in the Sens-ation server binary file
[Sens-ation Download].

27

http://127.0.0.1:8080/axis/servlet/AxisServlet
http://127.0.0.1:8080/axis/servlet/AxisServlet

3. Installation

2. Copy the contents of the [sensation-server]/php-gateway/ directory to
the htdocs directory of your apache webserver:

• OS X: You find the htdocs directory in Applications/MAMP/htdocs/.
See figure 3.4.

• Windows: You find the htdocs directory in
[XAMPP-install-directory]/htdocs/

3. Open the file config.inc.php and change the server destination (if you have
installed the server on the local computer, just insert localhost). (see figure
3.5)

4. Open the file admin.inc.php and change the superuser name and password.

5. Start your webbrowser, type the apache directory (OS X/MAMP:
localhost:8080, Windows: localhost) in the browser address bar and
enter your superuser login.

6. Now you can select one of the menu entries to access the sensor values.

Figure 3.4.: HTDOCS directory of the MAMP server

28

3. Installation

Figure 3.5.: PHP configuration file config.inc.php

3.4.4. ESB Sensor Adapter

The ESB sensor adapter is the connection module of the ESB hardware to the Sens-
ation server. It opens a COM connection to the ESB module (COM1 or COM2)
and a XML-RPC connection to the server to publish the new sensor events.
Note: This adapter has to be installed on a system with the Microsoft Windows
operating system, because the Java Comm API is only available for this platform.

1. Download the ESB sensor adapter package from the CML download website
[Sens-ation Download].

2. Extract the ZIP file to the desired location on your HDD.

3. Connect the ESB module to the COM1 or COM2 port.

4. Open a terminal software (like TerraTerm or HyperTerminal), select the

29

3. Installation

COM port you have connected the board and choose the following settings:
Baud rate: 115.200, Data bits: 8 bit, Parity bit: none, Stop bit: 1 bit, Flow
control: none

5. Enable the local echo to see your console input.

6. Then start the serial port connection

7. Type saf 32 and press Ctrl+Enter. The sensor board should now send the
event string each second.

8. Close the terminal software.

9. Connect the optional second ESB module to the COM port, start the ter-
minal software again and configure the software as listed above.

10. Type saf 16 and press Ctrl+Enter. This enables the wireless transmission
mode, so you can use this ESB module without a connection to the PC.

11. Disconnect this ESB module and connect the first ESB module again.

12. Open a new console window (Win 2000: ”Start”, ”Execute”, type ”cmd”
and press enter) and change the path to the directory with the ESB sensor
adapter binarys.

13. Type: ”esb [COM] [IP] [PORT]”, where [COM] is the COM port you have
connected the ESB module, the [IP] and [PORT] are the address to the run-
ning Sens-ation server, so you can for example write: ”esb COM1 localhost

5000”.

14. Note: You can also change the start-esb.bat file to change the settings
permanent.

15. If everything was correct, you can see the ESB messages and XML notifica-
tion messages scrolling down the screen.

30

4. Server Architecture

4.1. Modules

The Server class is the main part of the Sens-ation infrastructure. It initializes
the SensorHandler, ServiceHandler and GatewayHandler, starts the socket thread,
the Apache webserver component and registers the XML-RPC gateways (see figure
4.1).

SensorHandler Is responsible for the management of all
sensors, locations and sensor types. Has various
methods for exploration as well as getter and setters.
(more details: section 5.1).

GatewayHandler The connection class for all developed gateways:
Access via the XML-RPC connection (port 5000),
includes method for location and sensor discovery,
registration of clients for sensor events and
get methods for SensorValues (section 4.4).

ServiceHandler Responsible for the service classes. Dynamic class
loading of the classes specified in the services.xml
file. More details in chapter 6.

4.2. Utility Classes

• XMLProcessing

This module has several methods for parsing (method names with:
parse[type]XML, e.g. parseSensorsXML) and writing (method names with:
get[type]XML, e.g. getSensorsXML) XML data. While the single parsing
process of data (locations, sensors, etc.) is done by the objects themself (with
the parseXML method), the XMLProcessing method can parse collections of

31

4. Server Architecture

��������	�

�����������

��������

��	
������
��

�����
	��������

�����������
����

���������
�����������
�������

�����
������
�

��
������
�

��������
������
�����
����

�������
����

�����������
!������"

����
����������

��#���
�������"

���������

� � � ���

������

����		�� ����
����������
��
$%��
&�����
�������

������������
� '��!��(
������
�����������
#��
)��*��

��+���������
���������

��+��
���!��(��
������
���!��(��

��,,+
��"��

��#���
���
������
��"����+

����	��������

-�����#��

.���!�+
���

.���!�+
��	/��

.���!�+
��(��

.���!�+
0)�	

0)�	�
-��

/��
��1����

'��!��(

�0�
2�������

������
.3�

���
��	
&����"��

����	��

����	�

���������

�
�

	�/
��

�
����
45
5

5

��������
�	
���

)�
��
����
6

5
5

5

0))�*
�0�

������
�����

0)�	
!����

����	/���
�������

�����#�
�����

����#�
�����

��(���
�������

������������ �������

�����)+���

�
�

	�/
��

�
����
45
5

5

����&���"��

!�������"
����	�
#����

���������
�������&

����

$�
��

�
��������

���7+

���7+

/�"�������
�������

	�������������)+���

-�����#��

$����� ��������

�
	�""��
�
3�����+
�
��	
���������"
�
���8

�
��#��
������
�
0������
/�"����+
�
��������,�����

�����

�����#�� ��������������

������+

'�����������

��������	��	��

�
��&&���
	���

�����������

��������
�
���������"
�
�""��"�����
���

��������������

�����
������
�������

���7+

Figure 4.1.: The Sens-ation infrastructure architecture details

data and return ArrayLists with the objects. The SensorHandler parses the
sensor configurations of the sensors.xml file and uses the parseSensorsXML
method to get a list of all parsed sensors (to insert them into the hashtable).

• Logger

The Logger is responsible for writing the console output (e.g. info messages,
error messages, state description, etc.) of the server and the connected mod-
ules to the system console window. All methods of the Logger are static and
can be used without creating a instance of the Logger object.
It is conceivable to extend this module to write the messages to a log file, or
to display the messages in different GUI (swing) windows.

• Utility

The methods stringToDate can parse a string to a Java date object and
the dateToString method writes the parameter date time to a string. The
date and time format inside the ”Sens-ation” platform and for input/output
follows the rules of the ISO 8601 guideline [ISO 8601 Date and Time]. The
format is ”yyyy-MM-dd hh:mm:ss” (where yyyy is the year with four digits,
MM the month with two digits, dd the day with two digits, hh the hours passed
since midnight (0-23), mm the minutes and ss the seconds).

32

4. Server Architecture

• InitializeCML

The methods of this class can initialize the standard CML lo-
cations, sensors and services we used during the development
process. By default the server will load the descriptions from the
XML files in the server root directory, but with changes in the
server.properties file you can changes this setting: set all three
server.initializecml.x, properties to true and delete the lines with
server.sensorhandler.sensorfile/locationfile/sensortypefile.

4.3. Console Interaction

The console thread (class: ServerConsole) started by the server class is for com-
mand line interaction with the server module. The module uses the reflection API
to use the methods of the commands class to execute the commands by invoking
the corresponding method. The code fragment for dynamic method execution can
be found in listing 4.1. We use the commands class (line 3) to search for the
corresponding method (line 6) of the command string (line 1) with a vector as
parameter (line 4-5). Then the argument vector (line 9) and the commands class
are used to invoke the method (line 11).

Listing 4.1: Using the reflection API to execute commands, Class: ServerConsole
(without try/catch blocks)

1 String command = "list sensors";

2 Commands com = new Commands ();

3 Class commandClass = com.getClass ();

4 Class partypes [] = new Class [1];

5 partypes [0] = Vector.class;

6 Method commandMethod = commandClass.getMethod(command , partypes);

7

8 Object arglist [] = new Object [1];

9 arglist [0] = params;

10 Object returnValue = null;

11 returnValue = commandMethod.invoke(com , arglist);

In the server condole window you can enter various commands to display sensor,
location and hardware information as well as some XML descriptions and other
informations. You can see the command prompt ”Command” that means that
you can type your command.

33

4. Server Architecture

The following commands can be executed (equivalent to the methods
of the class ”Commands”):

• list sensortypes
Print all registered sensor types (parsed from the sensortypes.xml file). These
are the main categories of sensors, e.g. temperatur, movement, light inten-
sity, etc.

• list sensors—loactions—services
Print all registered sensors/locations/services to the console window.

• delete [sensorID—locationID]
Delete the sensor (with sensorID) or the location (with locationID) from the
hashtable of the sensorHandler.

• property [name]
Print value of a property from cmlserver.properties file to console.

• value [sensorID]
Get the last value of the sensor. Uses the sensorValue.toString() method.

• exit
Closes all registered webserver handler and shutdown the server.

• xml location [locationID]
Print the location with the given locationID as XML description.

• xml sensor [sensorID]
Print the sensor with the given sensorID as XML description.

• xml sensors—locations—sensortypes
Print the complete XML description of the sensors, locations or sensor types.

• server rc
Print all registered notification clients (in the notification table of the
GatewayHandler class).

• db write sensors—locations
Write all registered sensors/locations to the connected database.

34

4. Server Architecture

• db on—off [sensorID]
Activate or deactivate the boolean tag for writing the sensor values to the
database. By default all these tags of the sensor objects are set to false, so
for history value access only the internal cache of the sensor objects (100
values) will be used.

If you want to implement additional commands, just add the method to the
Commands class, so that they can be found with the reflection API call of the
SensorConsole class.
Instead of using only the local console for user interaction, it is also conceivable to
implement a remote server control, e.g. with the use of a TCP socket connection.
This would be very useful for remote administrator access to the server module.
Due to the implementation of the Commands class as command encapsualtion this
extension as well as other server interaction methods can easily be implemented.

4.4. GatewayHandler

The GatewayHandler class represents the main node between the gateways, which
are responsible for building a public interface to external access, and the Sen-
sorHandler, whose task is to manage sensors. All gateways connect to this class to
process requests to the sensor handler. It is an XML-RPC server to all gateways
for incoming requests, and a client for outgoing calls. Also, it contains the main
mechanism for user registry to sensors or services for XML-RPC and for AXIS
webservices. This means, that users may register for a distinct sensor and are af-
terwards automatically notified if an event occured on that sensor. For example, if
a user registers for a movement sensor, and, because of movement in the room, the
sensor fires an event, then the user receives a message telling him that something
is moving. To manage that feature, the GatewayHandler implements the observer
pattern as subject to the SensorHandler. The main user registry consists of a sim-
ple hashmap, containing another hashtable for every sensor that has at least one
interested user. Everytime a user registers, it is checked, if already a hashtable
with the sensor’s name as key exists in the hashmap. If that is true, the user is
casted upon a RegEntry class and added to the sensor’s hashtable. Otherwise, a
new hashtable is created and added to the registry with the sensor’s name as key,
and the register method on the sensor handler is called.

1 public synchronized String register(String ip , String sensorID , String port) {

2 ip=ip.trim();

3 sensorID=sensorID.trim();

4 port=port.trim();

35

4. Server Architecture

5 if ((ip == null) || (sensorID == null) || (port == null)

6 || (ip.equals("")) || (sensorID.equals("")) || (port.equals("")

)) {

7 // if one of the params is empty , report error

8 Logger.message("Error registrating Gateway Client IP: " + ip

9 + " SensorID " + sensorID + " on port " + port);

10 return "error";

11 } else {

12 RegEntry re = new RegEntry(ip , port , sensorID);

13 // a new RegEntry is created

14 // when already a hashtable exists having the sensorID as key ,

15 // the client is just added to it

16 if (clientRegister.containsKey(sensorID)) {

17 Hashtable ht = (Hashtable) clientRegister.get(sensorID);

18 ht.put(ip , re);

19 clientRegister.put(sensorID , ht);

20 // when no hashtable with the key of the sensorID exists

21 //a new one is created , and the RegEntry put in

22 } else {

23 Hashtable ht = new Hashtable ();

24 ht.put(ip , re);

25 clientRegister.put(sensorID , ht);

26 registerService(sensorID);

27 }

28 Logger.messageComm("Gateway Client " + ip + " is registrating for "

29 + sensorID + " on port " + port);

30 return "done";

31 }

32 }

This is only happening at this point of time, because the sensor handler, unlike the
gateway handler, only holds one entry in its registry for every sensor, that at least
one user wants to be notified of. You can print both the registered XML-RPC- and
AXIS clients by typing on the server console server rc. Unregistering is much the
same procedure as registering, also deleting empty sensor hashtables. Similarily as
being a subject to the SensorHandler class, the gateway handler is also observer
to the registered clients, using XML-RPC communication. The notify method
informs users about events from the sensors using XML-RPC. Everytime a notify
method is called, the registry is checked if there is an entry of the sensor‘s name
in ther user registry. If that is the case, the sensor’s user hashtable is mapped to
its RegEntries which consist of the IP and the port and the answering message is,
in case of an XML-RPC client, directly sent to him, or, in case of an AXIS client,
put into the AXIS message cache.

1 public synchronized void notify(Object ob) {

2 SensorValue sensorValue = (SensorValue) ob;

3 // get the registry hashtable of the clients ,

4 // that registered for that sensor.

5 Hashtable ht = (Hashtable) clientRegister.get(sensorValue.getSensorID ());

6 if (ht != null) {

7 // if the hashtable isn ’t empty , iterate

8 Iterator it = ht.keySet ().iterator ();

9 while (it.hasNext ()) {

10 RegEntry temp = (RegEntry) ht.get((String) it.next());

36

4. Server Architecture

11 try {

12 // make the call to clients

13 makeCall(temp.getIp (), temp.getSensorID (), temp.getPort (), sensorValue)

;

14 } catch (XmlRpcException e) {

15 // if the client isn ’t reached for a reason , unregister him.

16 unregister(temp.getIp (), temp.getSensorID ());

17 } catch (IOException e) {

18 unregister(temp.getIp (), temp.getSensorID ());

19 }

20 }

21 }

22 ht = (Hashtable) axisClientRegister.get(sensorValue.getSensorID ());

23 // get the registry hashtable of the clients , that registered for that sensor

.

24 if (ht != null) {

25 Iterator it = ht.keySet ().iterator ();

26 while (it.hasNext ()) {

27 //if the hashtable isn ’t empty , iterate

28 RegEntry temp = (RegEntry) ht.get((String) it.next());

29 Vector message = new Vector ();

30 // When the message cache already has an entry of that ip , add the message

to it

31 if (axisMessageCache.containsKey(temp.getIp ())) {

32 message = (Vector) axisMessageCache.get(temp.getIp ());

33 message.add(sensorValue);

34

35 // when the amount of messages is higher than the threshold

36 // and the database is initialized ,than the messages are written to

37 // the database

38 if((message.size()>cacheSize)&&(useDB)){

39 message.remove (0);

40 writeToDataBase(temp.getIp (),message);

41 message.clear ();

42 message.add(temp);

43 }

44 //if no entry exists , just add the SensorValue to the message

45 } else {

46 message.add(temp);

47 message.add(sensorValue);

48 }

49 // everything is put in the AXIS message cache.

50 axisMessageCache.put(temp.getIp (), message);

51 }

52 }

53 }

54 }

The makeCall method is used for directly connection to XML-RPC clients. It’s
the key method in the notification mechanism

1 private synchronized void makeCall(String ip , String sensorID , String port ,

2 SensorValue sv) throws XmlRpcException , IOException {

3 // A new XML -RPC client is initialized , containing the IP

4 // and port of the registered client.

5 xmlrpc = new XmlRpcClient("http ://" + ip + ":" + port);

6 Vector params = new Vector ();

7 String result = null;

8 // adding the parameters to a Vector

9 //to be conform with XML -RPC

37

4. Server Architecture

10 params.add(sv.getSensorID ());

11 params.add(sv.getDateStamp ().toString ());

12 params.add(sv.getString ());

13 //a notify call is made to the " StableXMLRPCClient " handler

14 result = (String) xmlrpc.execute("StableXMLRPCClient.notify", params);

15 }

If the database is used, the entries are saved in a local database everytime the
user has more than 10 different messages. AXIS clients have actively to fetch the
messages from the message cache by using the method getAxisMessage. Data that
was saved in the database is fetched and removed from the database. As parameter,
the IP of the client is needed. When the GatewayHandler is used separately
from the XML-RPC Gateway, the server.xmlrpc.localgateway property in the
server.properties file must be set at ”true” The GatewayHandler runs with
XML-RPC 1.1. The gateway handler has much the same methods as the XML-
RPC gateway or the AXIS gateway, but it’s supposed to be encapsulated from
external access, and therefore not to be connected directly from qclients:

• getAllLocations*() : This method returns all location ids that sensors are
located at.

• getAllSensors*() : This method returns all sensor ids no matter of their
location.

• getHardwareMetadata(String hardwareID) : This method returns the
hardware description of a sensor as Vector

• getSensors*(String locationID) : This method returns the sensor ids
located at the specific location.

• getSensorXML(String sensorID) : This method returns the XML descrip-
tion of the sensor.

• getServerDescription() : This method returns the description of the
server as String

• getValue*(String sensorID) : This method returns the last published
value of that specific sensor.

• getValues*(String sensorID) : This method is for returning all values of
a specific sensor.

38

4. Server Architecture

• getValuesXML(String sensorID, String startDate, String

endDate) : This method returns all events of a specific sensor from
the starting date to the ending date.

• notify(Object o) : This method is used for client event notification.

• register[Axis](String ip, String sensorID, String port) : This
method is called registerAxis for the AXIS gateway, and register for
the XML-RPC gateway. It’s for registering a client for asynchronous ser-
vices and sensors.

• unregister[Axis](String ip, String sensorID)This method is called
unregisterAxis for the AXIS gateway, and unregister for the XML-RPC
gateway. It’s for unregistering a client for a specific sensor or service.

• useDB() This method was implemented for the XML-RPC gateway and re-
turns a boolean, if the database is running or not. It’s called from the
XML-RPC gateway to check if authentication is possible.

39

5. Sensors, Values, Locations and
Adapter Modules

5.1. SensorHandler

This module handles the registration process for all sensors, sensor types, locations
and hardware modules in the infrastructure. It also encapsulates the exploring
methods for finding sensors via a specified sensor type, location, hardware group,
etc. The GatewayHandler uses the methods of the SensorHandler to receive
information about the registered sensors, locations and also to access the current
or history sensor values. The SensorPort uses the register methods of the
SensorHandler to pass the incoming registry requests (see figure 4.1).
All notifications of incoming sensor events through one of the gateway modules
will be distributed to the required sensor in the private sensor hashtable.

1 public boolean notifySensor(SensorValue val){

2 if(hasSensorID(val.getSensorID ())){

3 ((Sensor)sensors.get(val.getSensorID ())).notify(val);

4 return true;

5 } else return false;

6 }

The SensorHandler module can initialize the sensor types from the
sensortypes.xml file located in the server root, as well as it parses the
locations.xml and sensors.xml files to create the locations and sensors.
You can see the sensor initialization as example in listing 5.1: If the property
server.initfromdatabase is true (line 2), the SensorHandler will load the
descriptions from the database (line 4). Then the module loads the path and
name of the sensor description file (from the properties file) (line 7) and uses the
XMLProcessing module to parse the XML file (line 10). Then it iterates through
the parsed sensor list and adds the sensors to the private hashtable of sensors:

40

5. Sensors, Values, Locations and Adapter Modules

1 private void initSensors (){

2 if(preferences.getBooleanProperty("server.initfromdatabase")){

3 if(useDatabase){

4 this.readSensorsFromDatabase ();

5 }

6 }

7 String xmlfile = preferences.getProperty("server.sensorhandler.sensorfile");

8 if(xmlfile != null) {

9 String data = Utility.fileToString(xmlfile);

10 ArrayList sens = XMLProcessing.parseSensorsXML(data);

11 Iterator it = sens.iterator ();

12 while(it.hasNext ()) {

13 Sensor add = (Sensor)it.next();

14 this.addSensor(add);

15 }

16 }

17 }

This class is implemented as singleton so there is no public constructor to prevent
multiple instances. Use the getInstance() method to get access to the single
instance of the SensorHandler.

5.2. Sensors

This class represents the server-side implementation of the connected sensors.
The SensorHandler stores these sensor objects in the private hashtable and
provides exploration methods.
Each sensor has a unique sensorID and also the properties that describes his
measured values, the time intervalls, etc.
To export and import sensor information (e.g. used for the sensor registration
process) the private member data of the sensor can be written to XML data, and
also parsed from XML data back to the private members (by using the toXML and
the parseXML method).
The parseXML method creates a new DOM document and creates a instance of
the SAXBuilder.

1 Document doc = new Document();

2 SAXBuilder builder = new SAXBuilder ();

Then the method tries to parse the contents of the sensorXMLString to the
document doc (line 2), gets the root element (line 3) and validates that the root

41

5. Sensors, Values, Locations and Adapter Modules

element is ”Sensor” (line 4).

1 try {

2 doc = builder.build(new InputSource(new StringReader(sensorXMLString)));

3 Element root = doc.getRootElement ();

4 if(root.getName ().equals("Sensor")) {

In the next step the parser tries to read the two attributes of the Sensor root
entry: the sensor class (line 1-2) and ths sensor id (line 4-5):

1 Attribute attrib = root.getAttribute("class");

2 if(attrib != null) sensorType = attrib.getValue ().trim();

3

4 Attribute attrib2 = root.getAttribute("id");

5 if(atttrib2 != null) sensorID = attrib2.getValue ().trim();

To read the child nodes of the XML description, the method calls the
getChildren([name]) method of the root object (line 2). If there is an el-
ement in the elements list (line 3), the parser reads the text entry of the node
(line 5):

1 [...]

2 List elements = null;

3 elements = root.getChildren("Description");

4 if(elements.size() > 0){

5 Element descriptionElement = (Element)(elements.get (0));

6 description = descriptionElement.getTextTrim ();

7 }

8 [...]

9 }

10 }

The parsing process of the Location and SensorType objects works in a similar
way.

5.3. Sensor Values

SensorValue objects contain the event messages of each sensor. When an event of
a connected sensor occurs, the sensor adapter is responsible for passing this event
as SensorValue to the platform (see section 5.5).
A SensorValue contains four main members:

42

5. Sensors, Values, Locations and Adapter Modules

1. SensorID: ID of the sensor that has produced the event message.

2. Datestamp: Date and time in ISO-8601 format (yyyy-MM-dd hh:mm:ss, e.g.
2005-12-30 22:12:17) [ISO 8601 Date and Time]

3. The value as string, float or integer. The members valueString,
valueFloat and valueInt store the value.

4. NativeType: The native data type; set when you use the constructor or
setter method. You can use the static constants of the SensorValue object to
set or compare the native data type: SensorValue.DATATYPE INTEGER = 1,
SensorValue.DATATYPE FLOAT = 2, SensorValue.DATATYPE STRING = 3.

When you create a new SensorValue object, you can use one of the four
constructor methods, e.g. the method SensorValue(String sensorID, String

value) to specify the ID of the sensor and the event message. Each time when no
datestamp is given to the SensorValue object, the current server date and time
will be used for the date and time members.
The SensorValue can be written to XML data with the toXML() method (see
listing 5.3): We use the JDOM library and create a new Document object (line
2). To the document we add the XML node object (see listing 5.3), format the
XML output (line 4) and return the string contents of the XML document (line 5):

1 public String toXML (){

2 Document doc = new Document();

3 doc.addContent(this.toXMLnode ());

4 XMLOutputter out = new XMLOutputter(org.jdom.output.Format.getPrettyFormat ())

;

5 return out.outputString(doc);

6 }

With the toXMLnode() method we get a XML child node with the contents of the
SensorValue: We create a new XML Element and set the root entry to ”Value”
(line 2). Then we add the three members of each SensorValue (lines 3-5) and
return the root object. The division in these two methods is because we use the
toXMLnode() method also in the XMLProcessing class to generate sensor value
collections.

1 public Element toXMLnode (){

2 Element root= new Element("Value");

3 root.addContent(new Element("SensorID").addContent(sensorID));

4 root.addContent(new Element("DateStamp").addContent(Utility.dateToString(

dateStamp)));

5 root.addContent(new Element("Event").addContent(valueString));

43

5. Sensors, Values, Locations and Adapter Modules

6 return root;

7 }

5.4. Locations

Location objects can specify the location of the sensor modules. Each object can
contain the following members:

• LocationID (compulsory): ID string for the location.

• LocationDescription (compulsory): Description string for the location.

• DegreeOfLongitude: Degree of longitude as float.

• DegreeOfLatitude: Degree of latitude as float.

• HeightAboveSeaLevel: Height of the current location as float.

• LocationType: Integer value to specify if the location is inside or outside
a building. Use the static final members of the Location object to specify:
LOCATION NOT SET = 0, LOCATION INSIDE = 1, LOCATION OUTSIDE = 2.

Beyond the the getter and setter methods for the members, the Location object
also has methods for reading and writing XML data: parseXML(), toXML() and
toXMLnode().

5.5. Notification

When new events of the connected sensors occured, the SensorHandler

and especially the Sensor object that belong to the event have to
be notified. Each sensor object implements the subject interface
(de.buw.medien.cscw.sensation.interfaces), so that the SensorHandler can
distribute the incoming sensor events to each sensor. The sensor receives the
event as parameter (cast to SensorValue) and stores the events in a local cache
(listing 5.5):

44

5. Sensors, Values, Locations and Adapter Modules

1. If saveValuesInDatabase is true (this is the private tag for the sensor to
save values in database) and the DataManager is initialized, the sensor saves
the value in the database (lines 2-10).

2. Then the sensor will iterate through the observerList and execute the
notify method of each observer (this can be clients observing a sensor or a
service object, etc.) (lines 12-15).

3. At last the incoming sensor value is stored in the local cache of sensor values
(by default 30 values) (line 16).

1 public void notify(Object event) {

2 if(saveValuesInDatabase){

3 DataManager dbm = sensorHandler.getDatabaseManager ();

4 if(dbm != null){

5 SensorValue sv = (SensorValue)event;

6 sv.setNativeType(this.nativeDataType);

7 ArrayList events = new ArrayList ();

8 events.add(sv);

9 dbm.insertSensorValues(events);

10 }

11 }

12 Iterator it = observerList.iterator ();

13 while(it.hasNext ()){

14 ((ObserverInterface)it.next()).notify(event);

15 }

16 this.addValueToCache ((SensorValue)event);

17 }

To register a new observer for the sensor object you have to execute the
register method and add the observer object as parameter (public boolean

register(Object observer)). The observer must implement the observer pat-
tern (de.buw.medien.cscw.sensation.interfaces), so that he has the notify
method to handle the sensor events (to unregister use the method public boolean

unregister(Object observer)).

5.6. Sensor Types

The sensor types specify the class affiliation of a sensor, e.g. as temperature
or movement sensor. These are classifications to list sensors with the similar
measurements together in the same group. The sensor types are specified in
the sensortypes.xml file, and the SensorHandler reads this file and creates the

45

5. Sensors, Values, Locations and Adapter Modules

SensorType objects. Each registered Sensor has to refer to a sensor type.
The following sensor types are specified in the sensortypes.xml:

ESB Sensors
Temperature Temperature sensor
Movement Movement detection (with passive IR)
Vibration Vibration detection
Light Light sensor
Noise Current microphone level
NoiseAverage Average microphone level
NoiseCounter Counter value of the microphone
Button Hardware button of the ESB
Infrared Infrared remote control
Mobile Sensors
CellPhoneText Text messages from mobile phone
CellPhoneState State description of mobile phone
CellPhoneRC Remote control command
Other Sensors
Presence Presence information of the PRIMI messenger
ASCII General text message
MessengerStatus Messenger state in general
MessengerText Mesenger text message
Binary True or false state of a sensor
Service A sensor created by a service object
Other None of the categories above

5.7. XML Descriptions

The sensors can be described in XML format, to enable the easy exchange and
import of sensor information. Use the toXML method of a sensor object to export
to an XML string (as in listing 5.1) or use the parseXML method to parse a string
and insert the values into the sensor objects members.

Listing 5.1: Sensor XML description
1 <Sensors >

2

3 <Sensor id="SensorESBButton" class="Button">

4 <Description >ESB hardware button , true or false.</Description >

5 <LocationID >HK7</LocationID >

6 <Owner>Cooperative Media Lab</Owner >

7 <Comment >Binary hardware button control </Comment >

46

5. Sensors, Values, Locations and Adapter Modules

8 <AvailableSince >2005 -01 -01 10 :00:00 </AvailableSince >

9 <AvailableUntil >2005 -12 -01 12 :00:00 </AvailableUntil >

10 <SensorActivity activity="active" />

11 <NativeDataType >Binary </NativeDataType >

12 <MaximumValue ></MaximumValue >

13 <MinimumValue ></MinimumValue >

14 <HardwareID ></HardwareID >

15 <Command ></Command >

16 </Sensor >

17

18 <Sensor id="SensorESBTemp" class="Temperature">

19 <Description >Embedded sensor board temperature sensor.</Description >

20 <LocationID >HK7</LocationID >

21 <Owner>Cooperative Media Lab</Owner >

22 <Comment >Measures temperature in celsius degree.</Comment >

23 <AvailableSince >2005 -01 -01 10 :00:00 </AvailableSince >

24 <AvailableUntil >2005 -12 -01 12 :00:00 </AvailableUntil >

25 <SensorActivity activity="active"></SensorActivity >

26 <NativeDataType >Float </NativeDataType >

27 <MaximumValue >50.0</MaximumValue >

28 <MinimumValue > -40.0</MinimumValue >

29 <Unit>Celsius </Unit>

30 <HardwareID />

31 <Command />

32 </Sensor >

33

34 [....]

35

36 </Sensors >

5.8. Integrate new Sensors

To integrate new sensors into the platform you can:

1. Add the XML description to the sensors.xml, so the sensor will be initial-
ized at startup.

2. Use the PHP adminstration interface to register the new sensor (see 8.2).

3. Use the XML-RPC interface to register the new sensor via the SensorPort

(contact the running server with IP (localhost if the server is running on
your local computer) and the port (by default 5000)).

In chapter 10.2 you can find a tutorial for the development of a sensor adapter
class (a virtual keyboard sensor).

47

5. Sensors, Values, Locations and Adapter Modules

5.9. Adapter Modules

The adapter modules are the connector between the sensors hardware compo-
nents and the server side. Each sensor adapter can choose one of the notification
gateways to communicate with the server, for example the XML-RPC interface
SensorPort, the socket interface GatewaySocket or the HTML lightweight gate-
way.
Adapters hide the sensor hardware specific implementation (e.g. complex termi-
nal commands) and are responsible for the data retreival of each sensor. With one
adapter module it is possible to connect more than one sensor to the platform; in
that case the adapter must assign the correct sensorID to the published events.
Each time when an event occurs, the adapter is responsible for the transmission
to the server.
Adapters can connect various hardware modules to the server, e.g. connected at
the serial (COM) or parallel port (LPT) as well as USB or Firewire port.

5.9.1. ESB XML-RPC Adapter

The ESB (Embedded Sensor Board, see [ESB Documentation]) is a hardware mod-
ule with some integrated sensors, e.g. the sensors for temperature, movement (pas-
sive infrared detection), light intensity, vibration or noise (as well as some further
sensors). The ESB is connected to the COM port of the computer, so we used
this module connected to the Windows PC (due to the missing COM port of the
iMacs).
For the connection to the ESB board we have developed several classes
to encapsulate the complete hardware connection and hide this im-
plementation from the server side. You find these communication
classes in the package de.buw.medien.cscw.sensation.sensors, the test
classes in de.buw.medien.cscw.sensation.sensors.tests and the adapter in
de.buw.medien.cscw.sensation.sensors.adapter.

5.9.2. ESB Communication Parser

One of the important classes of the ESB adapter is the SensorParser that can
translate the received and coded messages of the ESB board. The SensorParser

parses the string that contains summarized information from the ESB sensor board

48

5. Sensors, Values, Locations and Adapter Modules

and extracts the sensor values to add them to the SensorDataCollection object.
The ESB terminal command [ESB Terminal Commands] for receiving all sensor
values is the ”rsr” command. With the ”sft 32” flag you can activate the automatic
sending of all current sensor events and values. This also includes remote events,
transmitted from wireless connected further ESB modules using the integrated
transceive/receive hardware.
Here is an example of an received string of the ESB:

1 [20|01.01.00 00:04:46|+026.0][IR: C(5) A(20)][Btn: 0][Light: 1046 Hz][Pir: 2][

Vib: 0][Mic: 0][BAT: 2266][EXT: 158]

To parse this string we use the regular expression package [Darwin 2001] of the
java utilility classes and an instance of the Pattern and Matcher objects:

1 import java.util.regex .*;

2 [...]

3 Pattern pattern;

4 Matcher matcher;

Then we initialize the pattern with an object of the static compile method of
the Pattern class, and we specify the regular expression pattern (for finding the
string ”[Light: 1046 Hz]”) as parameter (line 1). The matcher object gets an
instance created by the matcher method of the pattern object and gets the string
to parse as parameter. If the pattern was found, the parser extracts the numeric
value with a private method (line 5) and sets the value of the light member of the
SensorDataCollection to the integer value of the parsed string (line 7).

1 pattern = Pattern.compile("\\[Light :\\s[0 -9]*\\ sHz \\]");

2 matcher = pattern.matcher(toParse);

3 if (matcher.find()){

4 String light = matcher.group ();

5 light = this.regularExpressionNumbers(light);

6 if (! light.equals("")){

7 collection.setLight(this.stringToInt(light));

8 }

9 }

The parsing process for the further data members of the value string is similar to
this explained example. See the Javadoc notes in the SensorParser.java file for
more information.

49

6. Services

6.1. Concept of Services

With the SensorHandler (chapter 5) and the gateway modules (chapter 8) the
client can explore the registered sensors and can also access their values. To
further process this raw data, the client has to implement these calculations in
his own methods. To transfer this processing step to the server methods, we have
implemented the Service classes.
The services can interpret sensor values, but also aggregate values of different
sensors. They make it possible to create a sort of logic network of connections
between sensors. In example a service can gather the values of all registered tem-
perature values and calculate the average temperature value. Or the service can
observe all movement sensors and reacts if one of the sensors detects movement
(see figure 6.1).

���������	
���

�������
����	�
�������

�����������	�

����	�
�����
��	��������

�����������	�

�������
����	�
����

�
	��������	�

����	�
� ������

���������	�
���
�����

����	�
�����
��	��������

�����������	�

�
	��������	�

����	�
� ������

����	�
�

����	�
�

�������
����	�
����

Figure 6.1.: The service architecture: Interpretation and aggregation of sensor val-
ues

50

6. Services

With the implementation of Service classes we can build objects which are able
to build the functionality of transformers, filters, mergers and aggregators (as
explained in [Chen & Kotz 2002]). To implement a transformer (we call this
interpreter) you have to register the service for exact one sensor and implement
the interpretation functionality in the notification() method. The merger
subscribes for more than one sensors (of the same sensor type) and calculates for
example the average value (of temperature sensors). The filter will for example
only pass the values above a given threshold and the aggregator can build
interpretations on the basis of different kind of sensors (see figure 6.2).

S

S

S

S

S

S

S

App App

(a)

(b)

(c)

(d) (e)

S

S

Context
Service App

S

S

S

App

S

S

S

App

App

App

AppS

Figure 1: The circles are information sources,the white squaresare operators,and the dark rectanglesrepresent
application-specificprocessing.(a)Sendraw datafrom thesourcesto theapplication,whichconverts thedatainto the
context informationit needs.(b) A “context service,” receivesall raw sourcedata,andprovideshigher-level context in-
formationto applications,but someapplication-specificprocessingis still necessary. (c) Pushtheapplication-specific
processinginto the network as a proxy. (d) Decomposethe processinginto application-independentportionsand
application-specificportions. (e)Allow multipleapplicationsto sharedatastreams wherepossible.

Our operatorgraphconsistsof threekinds of nodes:
sources,operators,andapplications.Thesourceshaveno
subscriptions.They arewrappersfor context sensors.Op-
erators aredeterministicfunctionsof their input events.
They only publish an event when they receive an input
event.Applicationsaresinksof thegraph.They subscribe
to oneor moreeventstreamsandreactto incomingevents
(andpossiblyotherstimuli, suchasinteractionswith the
user).

In our operatorgraph, a directededgefrom node A
to nodeB representsthat node B subscribesto the event
streampublishedby nodeA. Theoperatorgraphmaynot
be a treebecausean operatormay subscribeto multiple
streams,andits publishedoutputstreammay have more
than one subscriber. In summary, the publishers in the
grapharethe sourcesandoperators,andthe subscribers
in thegrapharetheoperatorsandapplications.

There are four commoncategories of operators(see
Figure 2). A filter outputsa subset of its input events.
(For example,a sensorpublishes the temperatureevery
10 secondswhile oneapplicationneedsalertsonly when
the readingexceeds 90 degrees.) A transformerinputs
eventsof typeE1 and outputseventsof typeE2. E2 may
be the sameasE1 if the transformeronly changessome
attribute values. (For example,a locationsensorreports
coordinates,but the applicationneedsa symbolic value
suchas“Lobby.”) Themerger simplyoutputseveryevent
it receives. (For example,an active-mapapplicationthat

T
E1 E2

M
E1 E1

E1

F
E1 E1

A
E1 E3

E2

Figure2: Four typesof operators:T asTransformer, F as
Filter, M asMerger, andA asAggregator.

displaysthecurrentlocationof all employeesmergesthe
readingsfrom all locationsensors.)While mergersarenot
strictly necessary, sinceany of the merger’s subscribers
coulddirectly subscribeto thesameinputs,a mergeraids
re-useof event streams. An aggregator outputsan ar-
bitrary type event streambasedon the eventsin one or
moreinputeventstreams.(For example,a“max-minther-
mometer”operatoroutputsaneventwhenit detectsanew
maximumor new minimumon its input streamof current
temperaturereadings.)

3.2 An example operator graph

Figure3 presentsanexampleoperatorgraph to show how
theraw eventsfrom information sourcesflow throughthe
operatorsto becomedirectly usableby the applications.
Circlesrepresentevent publishers; the letter inside indi-
catesits category (Sstandsfor source).Squaresrepresent
applicationsthatconsumetheevents.

3

Figure 6.2.: Four types of operators [Chen & Kotz 2002]

Chen and Kots [Chen & Kotz 2002] also explain the different connections between
the single operators (in Sens-ation: services). Figure 6.3 illustrates the structures
for connections of the infrastructure and the applications (white circles are infor-
mation sources/sensors, white squares are operators/services and dark rectangles
represent the application-specific processing [Chen & Kotz 2002]):

a) Infrastructure sends raw data from the sensors to the application, so the
application has to interpret these data.

b) The service of the infrastructure provides high-level information, but some
application-specific processing is still necessary.

c) The application-specific processing is implemented in the infrastructure net-
work.

d) The processing of sensor data is decomposed in application-independent por-
tions and application-specific portions.

51

6. Services

e) More complex network of connections between the services (and applications
can access different connections points of this network).

S

S

S

S

S

S

S

App App

(a)

(b)

(c)

(d) (e)

S

S

Context
Service App

S

S

S

App

S

S

S

App

App

App

AppS

Figure 1: The circles are information sources,the white squaresare operators,and the dark rectanglesrepresent
application-specificprocessing.(a)Sendraw datafrom thesourcesto theapplication,whichconverts thedatainto the
context informationit needs.(b) A “context service,” receivesall raw sourcedata,andprovideshigher-level context in-
formationto applications,but someapplication-specificprocessingis still necessary. (c) Pushtheapplication-specific
processinginto the network as a proxy. (d) Decomposethe processinginto application-independentportionsand
application-specificportions. (e)Allow multipleapplicationsto sharedatastreams wherepossible.

Our operatorgraphconsistsof threekinds of nodes:
sources,operators,andapplications.Thesourceshaveno
subscriptions.They arewrappersfor context sensors.Op-
erators aredeterministicfunctionsof their input events.
They only publish an event when they receive an input
event.Applicationsaresinksof thegraph.They subscribe
to oneor moreeventstreamsandreactto incomingevents
(andpossiblyotherstimuli, suchasinteractionswith the
user).

In our operatorgraph, a directededgefrom node A
to nodeB representsthat node B subscribesto the event
streampublishedby nodeA. Theoperatorgraphmaynot
be a treebecausean operatormay subscribeto multiple
streams,andits publishedoutputstreammay have more
than one subscriber. In summary, the publishers in the
grapharethe sourcesandoperators,andthe subscribers
in thegrapharetheoperatorsandapplications.

There are four commoncategories of operators(see
Figure 2). A filter outputsa subset of its input events.
(For example,a sensorpublishes the temperatureevery
10 secondswhile oneapplicationneedsalertsonly when
the readingexceeds 90 degrees.) A transformerinputs
eventsof typeE1 and outputseventsof typeE2. E2 may
be the sameasE1 if the transformeronly changessome
attribute values. (For example,a locationsensorreports
coordinates,but the applicationneedsa symbolic value
suchas“Lobby.”) Themerger simplyoutputseveryevent
it receives. (For example,an active-mapapplicationthat

T
E1 E2

M
E1 E1

E1

F
E1 E1

A
E1 E3

E2

Figure2: Four typesof operators:T asTransformer, F as
Filter, M asMerger, andA asAggregator.

displaysthecurrentlocationof all employeesmergesthe
readingsfrom all locationsensors.)While mergersarenot
strictly necessary, sinceany of the merger’s subscribers
coulddirectly subscribeto thesameinputs,a mergeraids
re-useof event streams. An aggregator outputsan ar-
bitrary type event streambasedon the eventsin one or
moreinputeventstreams.(For example,a“max-minther-
mometer”operatoroutputsaneventwhenit detectsanew
maximumor new minimumon its input streamof current
temperaturereadings.)

3.2 An example operator graph

Figure3 presentsanexampleoperatorgraph to show how
theraw eventsfrom information sourcesflow throughthe
operatorsto becomedirectly usableby the applications.
Circlesrepresentevent publishers; the letter inside indi-
catesits category (Sstandsfor source).Squaresrepresent
applicationsthatconsumetheevents.

3

Figure 6.3.: Methods for sensor data interpretation [Chen & Kotz 2002]

These structures can be implemented with using the Service classes of the Sens-
ation platform (section 6.3 describes the development of a new Service class
file). With these operators (services) and connections we can build more complex
networks to process the sensor data and retrieve context information or other high-
level interpretations. Figure 6.4 illustrates the composition of a operator graph
and show the flow of raw source events through the interpretation process.

007 Loc
 Sensor

Building
Locator

215 Loc
 Sensor

Active Map

Bob’s
Locator

Bob’s
Messenger

Bob’s
Guide

007
Monitor

Lab
Log

007 Equip
Alerter

215
People

TS

A

.

..

S

M

F

A

007
People

A

T

A F

F

215
Monitor

Figure3: An exampleoperator graph.

Supposewe have location-trackingsensorsinstalledin
eachroom and badgesattached to peopleand devices.
Eachtime a sensor detectsa signalfrom a badge,it sends
out aneventcontainingthebadgeID andthe timestamp.
In thefigurethesesourcesarelabeled“Loc Sensor”with
a room number;eachhasa transformingoperatorto map
the badgeID to the personor device’s nameassociated
with it.

TheBuildingLocatoroperatorsubscribesto thecurrent
location of every badge, basedon the transformedand
merged events that originate from the location sensors.
It recordsthe currentlocation in its internal state. (We
discussstatefuloperatorsbelow.) It generatesa “location
change”eventwhenever it seesa badgechangelocation.
This outputevent stream canbe usedby the ActiveMap
application(suchas[27]) to display the badges’current
locationin real time. Anothersubscriber, Bob’s Locator,
filters for changesin Bob’s location.Usingthis informa-
tion, a Guideapplication[1, 11] runningon Bob’s PDA
candisplayinformationrelatedto hiscurrentlocation.

Another reasonable structure,not shown, is to first
mergetheeventsfrom all locationsensorsandthentrans-
form themusingonly onetransformer, to whichtheBuild-
ing Locator subscribes.Any applicationthatcaresabout
locationeventsonly in oneparticularroom canfilter the
Building Locator’soutput. Althoughthatapproachseems
awkward,it allows theBuilding Locatorto resolvesensor
conflicts(wheremultiple locationsensorsreportseeing a
badgeat thesametime).

Returningto our example, the operator007 Monitor
tracksthesetof badgescurrentlyin thelab. Whena new
badgeis sensed,it generatesa “badgeentering” event.
Whena badgehasnot beensensed in the pastfew sen-
sorreports,thisoperator outputsa “badgeleaving” event.
Thefilter 007Peopleemitseventsaboutpeopleonly, not
devices.TheapplicationLab Log subscribesto thatevent
streamandrecordsthe eventswith timestampfor future
reference.

If the007EquipmentAlerter receivesa“leaving” event
for certainequipment,without receiving a“leaving” event

for authorizedpersonnelat aboutthe sametime, it pub-
lishesan alarm event that shouldbe sentto the lab ad-
ministrator(Bob), whoseMessenger applicationdisplays
thesealarmson his PDA. If thereis nobodyin the room
with Bob, theMessengerbeepsanddisplaysthemessage.
If thereareotherpeoplein the room, the Messengervi-
bratesinstead.Notice the Messengersubscribesto “215
People”operator(the dashedarrow) becauseBob is in
room 215 now. This subscriptionis dynamicand will
changeasBob movesaround.We discusstheconceptof
context-sensitivesubscriptions in Section3.5.

Thereareseveraladvantagesof theoperatorgraphab-
straction. First, applicationsreceive eventssemantically
closerto their needsthanthoseproducedby thesources.
Second,due to the modular, object-orienteddesignwe
benefit from operator reusability, data abstraction, and
maintainability. Third, dueto themodulardesignthis op-
eratorgraphcanbedeployedacrossanetworkandachieve
thebenefitsof parallelismanddistribution. Fourth,since
filters and aggregators can dramatically reduce traffic
alongthegraphedges, they reduceinter-process(andof-
ten inter-host)communication requirements.Finally, by
sharingthecommon operatorsandeventstreamsthesys-
temcansupportmoresuchapplicationsandmoreusers.

3.3 Operator state

Many operatorsneedto keepinternalstateinformationto
beusedwhenprocessingevents.Thestatemaybesimple,
asin anaggregatorthatsimply recordsthepreviousevent
to detectchanges.Thestatemaybecomplex, asin anop-
eratorthattracksthecurrentlocationof many usersor the
currentvalueof every stockon the market. Filter, trans-
formation,andmergeroperatorsarestateless;aggregators
mayhavestate.

Our graphabstractionallows the subscriber to choose
oneof two possiblesemanticsfor a new subscriptionto
a statefuloperator: 1) the subscriptionis treatedas for
statelessoperators,or 2) the operator should“push” its
currentstateto the subscriber beforeany new eventsare
published. In the lattersemanticsthe operatorpublishes
a specialsequenceof eventsto the new subscriberonly,
eventsthataremarkedas“state-pushingevents”andwhen
consideredtogetherrepresentthecurrentstateof theop-
erator. (This featureis reminiscentof theGryphonexpan-
sionoperation[3].)

ConsiderFigure3. The007Monitor maintainsa list of
badgescurrentlyin the lab andpublisheschangesto this
list. The Lab Log logs all the changeevents,andnever
needsthe original state. The Active Map, on the other
hand,needsa “statepush”whenit first subscribesto the
Building Locator, so it canproperly locateslow-moving
deviceslikeprinters.

4

Figure 6.4.: Example operator graph [Chen & Kotz 2002]

52

6. Services

6.2. ServiceHandler Module

By analogy with the SensorHandler, the ServiceHandler has register and
unregister methods for services. The initServices method uses the dynamic
class loader URLClassLoader to create instances of all specified services in the
’services.xml’ file (listing 6.1). This technology can be extended to a plug-in tech-
nology, e.g. to load service classes from remote locations.

Listing 6.1: ServiceHandler dynamic class loading (without try/catch blocks)
1 String data = Utility.fileToString(xmlfile);

2 ArrayList serviceLoad = XMLProcessing.parseServiceLoadXML(data);

3

4 Iterator it = serviceLoad.iterator ();

5 while(it.hasNext ()) {

6 String pathToClass = (String)it.next();

7

8 URL url = new File("").toURL ();

9 URLClassLoader cl = new URLClassLoader(new URL []{ url });

10

11 Class c = cl.loadClass(pathToClass);

12 this.registerService ((Service)c.newInstance ());

13 }

Two further methods are responsible for passing register and unregis-
ter notifications to the services: the methods notifySensorRegister and
notifySensorUnregister. The SensorHandler sends a notification to the
ServiceHandler, and the latter passes these infromation to all registered sensors.
They implement these notification methods from the abstract Service class. So
each service has to decide how to react to this register/unregister information.

6.3. Development of Services in General

To create a new service for the platform, you can follow these guidelines for service
development:

1. Create a new class in the package de.buw.medien.cscw.sensation.server.services.

2. Derive your class from the abstract service class: add ”extends Service”.

3. Create your class constructor, add ’super(”serviceID”)’ to the constructor
(where serviceID is the name of your service).

53

6. Services

4. Add a new sensor

5. Register your service as observer for all sensors you are interested in.

6. Implement ’notify’ method: you receive values from all sensors you are reg-
istered for as observer. In the notify method you can handle these events.

7. Implement ’run’ method: if you want use timer or delay functions

8. Implement ’notifySensorRegister’ and ’notifySensorUnregister’ methods:
The SensorHandler sends you an information, when a sensor registers or
unregisters himself from the infrastructure, so you can decide if your service
has to suspend until the sensor registers again.

9. Add your class name to the ’services.xml’ file. Add

<ServiceClass>

de.buw.medien.cscw.sensation.server.services.[yourClassName]

</ServiceClass>

to the ServiceLoad section.

10. Test the service in the development framework: with the build.xml file you
can compile and run the server framework; your new class will be compiled
as well. With ”list services” you can list the services to the server console.

6.4. Example Service: Interpreter

To illustrate the necessary development steps to create a new service, we will
explain the following example of an interpreter service.

1. Create the new class file ”Interpreter.java” in the package
de.buw.medien.cscw.sensation.server.services.

2. Add ”extends Service” to the class initialization (and if you use Eclipse
[Eclipse Foundation] you can automatic implement the necessary methods
of the super class).

54

6. Services

1 public class ServiceExample extends Service {

2 }

3. Create your class constructor and add ’super(”Interpreter”)’ to the construc-
tor. Create a call of the registerSensor() method we create in the next
step.

1 public Interpreter () {

2 super("Interpreter");

3 this.registerSensor ();

4 }

4. Implement the registerSensor() method:

1 private boolean registerSensor (){

2 String regSensorString = "<Sensor id=\" InterpreterSensor \" class =\"

Service\">" +

3 "<Description >Our new temperature interpreter </ Description >" +

4 "<HardwareID ></HardwareID >" +

5 "<Command ></Command ><LocationID >HK7 </ LocationID >" +

6 "<Owner >You </Owner ><Comment >Temp. Interpreter </Comment >" +

7 "<AvailableSince >2005 -01 -01 10:00:00 </ AvailableSince >" +

8 "<AvailableUntil >2005 -12 -01 12:00:00 </ AvailableUntil >" +

9 "<SensorActivity activity =\" active \" />" +

10 "<NativeDataType >String </ NativeDataType >" +

11 "<MaximumValue ></MaximumValue >" +

12 "<MinimumValue ></MinimumValue >" +

13 " </Sensor >";

14

15 Sensor regSensor = new Sensor ();

16 notificationSensorID = regSensor.parseXML(regSensorString , true);

17 return sensorHandler.addSensor(regSensor);

18 }

5. Register your service as observer for one existing sensor in the infrastruc-
ture; here: the sensor ”ESB1Temp” (the ESB temperature sensor). Add the
following statement to the constructor:

1 sensorHandler.register("ESB1Temp", this);

6. Now we implement ’notify’ method: we cast the notification object to a
sensor value and decide how we have to interpret the current temperature:

1 public void notify(Object event) {

2 SensorValue sv = (SensorValue) event;

3 Float temperature = event.getFloat ();

4 SensorValue notificationValue = new SensorValue ();

5

6 if(temperature > 30.0f){

7 notificationValue.setValue("It is hot!");

8 } else if(temperature < 5.0f){

55

6. Services

9 notificationValue.setValue("It is cold!");

10 } else {

11 notificationValue.setValue("Normal temperature.");

12 }

13 sensorHandler.notifySensor(notificationValue);

14 }

7. We only implement the ’notifySensorRegister’ and not the ’notifySensorUn-
register’ method: so we will be notified when our observed sensor is registered
again to the platform. We ignore the case that the sensor is not available
anymore.

1 public void notifySensorRegister(Sensor sensor) {

2 if(sensor.getSensorID ().equals("ESB1Temp")){

3 sensorHandler.register("ESB1Temp", this);

4 }

5 }

8. Add the class name to the ’services.xml’ file. Add

<ServiceClass>

de.buw.medien.cscw.sensation.server.services.Interpreter

</ServiceClass>

to the ServiceLoad section.

9. Test the service in the development framework: with the build.xml file you
can compile and run the server framework; your new class will be compiled
as well. With ”list services” you can list the services to the server console.

56

7. Database

The Sens-ation infrastructure captures information about sensors, their locations
and their measured values. To make this data available for longer time peri-
ods we need a database. We decided to use the open source database MySQL
[MySQL Database Website]. The Java Database Connectivity (JDBC) is used to
access the database. This chapter describes the database structure and the Sens-
ation package de.buw.medien.cscw.sensation.database.

7.1. Using JDBC

JDBC is a Java API (included in J2SE and J2EE) to provide connectivity to SQL
databases [JDBC]. To access the MySQL database JDBC needs a MySQL driver.
We are using MySQL Connector/J [MySQL Connector/J].

After installing MySQL Connector/J by simply adding the JAR file to the class-
path the implementation is done in a few steps:

1. Load the JDBC-driver (see line 13 in listing 7.1)

2. Establish the connection (see line 15 in listing 7.1)

3. Generate a SQL-statement (see line 19 in listing 7.1)

4. Execute the SQL-statement (see line 21 in listing 7.1)

5. Get the result (ResultSet line 21 in listing 7.1)

6. Close the connection (see line 29 in listing 7.1)

57

7. Database

A simple example:

Listing 7.1: Using JDBC
1 // Set the variables

2 // Driver name

3 String driver = "com.mysql.jdbc.Driver";

4 // Url of the database

5 String url = "jdbc:mysql ://" + database.hostIP + "/" + database.name;

6 // User name

7 String user = "test";

8 // User password

9 String password = "test";

10

11 try {

12 // Load the driver

13 Class.forName(driver).newInstance ();

14 // Establish the connection

15 Connection con = DriverManager.getConnection(url , user , password);

16 // Create the statement

17 Statement stmt = con.createStatement ();

18 // Create the SQL query

19 String sqlQuery = "SELECT * FROM " + tableName;

20 // Execute the query

21 ResultSet rSet = stmt.executeQuery(sqlQuery);

22

23 // Get the result

24 while (rSet.next())

25 System.out.println (rSet.getString (1));

26

27 // Close

28 stmt.close ();

29 con.close ();

30

31 } catch (Exception e) {

32 System.out.println("DB: error could not load driver");

33 } catch (SQLException e) {

34 System.out.println("DB: SQLException: " + e.getMessage () +

35 ", SQLState: " + e.getSQLState () +

36 ", VendorError: " + e.getErrorCode ());

37 }

The java.sql.ResultSet object (see line 21 in listing 7.1) is the return type of a
JDBC SQL request. The result of the request is given as a table.

7.2. Database Structure

The Sens-ation framework creates the following tables:

• Location table

58

7. Database

The location table contains all registered locations (section 5.4). The loca-
tionID is used as key.

Figure 7.1.: Location table

• Sensor table
The sensor table contains all registered sensors. The sensorID is used as
primary key. The locationID references to the location table.

Figure 7.2.: Sensor table

• Sensor history table
This table has the same structure as the sensor table (see above), but contains
all deleted sensors.

• Sensor values table
The sensor value table contains all sensor values 1. The sensorID references
to the sensor table.

Figure 7.3.: Sensor value table

• Sensor values history table
This table has the same structure as the sensor value table (see above), but
contains all deleted sensor values.

1Null events are not saved into the database. See section 7.3.2

59

7. Database

• User table
The user table contains all registered users. The userID is used as key.

Figure 7.4.: User table

• User subscribe table
This table contains all sensors and services a user is registered for.

Figure 7.5.: User subscribe table

• Axis event table
The Axis event table contains Axis events as cache for the Axis server, be-
cause the Axis server is not able to notify the Axis clients. So this table stores
the events until the client requests for them. It contains the IP addresses
corresponding to the events. An event consists of a sensor value (section
5.3).

Figure 7.6.: Axis event table

• Average sensor value table
This table contains the average sensor values of all sensors.

60

7. Database

Figure 7.7.: Average sensor value table

7.3. Implementation

7.3.1. Database Package

The classes of the package de.buw.medien.cscw.sensation.database are for
encapsulation the database access. For using the classes of this package you does
not need any knowledge about SQL and JDBC.

The class Database is an abstract super class. The constructor of these super
class prepares the database access. It loads the driver, establishes and holds the
connection.
The super class includes also these methods:

• Execute a SQL query

• Create a table

• Get database entries from a table

• Delete a table

• Convert the ResultSet into an Java object of the Sens-ation framework
(subsection 7.1)

For handling the Java objects of the Sens-ation framework there are the following
extended classes:

• AxisEventDatabase:
Handles axis events (section 4.4)

• DataManager:
Handles locations (section 5.4), sensors (section 5.2) and sensor values (sec-
tion 5.3)
Implements the DataManagerInterface

61

7. Database

• ServiceDatabase:
Handles average sensor values
Implements the ServiceDatabaseInterface

• UserDatabase:
Handles the registered users

The class SensorValueDBEntry is the type for saving sensor values in the database.
So a SensorValue must be converted before it will be added to the database
(section 7.3.2).

7.3.2. Special Methods

The methods for

• Creating a table

• Updating a table

• Inserting entries

• Converting entries

are attuned to the corresponding classes. The creating table methods have hard
coded strings for the table columns. Cause the tables have to save all the members
from the corresponding class and these are fixed.
So if you changes such a class, for example you delete or include new
members in the class Location you have to change the SQLquery string
in createTableLocation(), insertLocations(), updateLocationTable()

and in the class Database the result set parsing (section 7.1) of
convertIntoLocationArrayList().

Insertion of Sensor Values

The method insertSensorValues() is a method of the DataManager. This
method stores the sensor values in the database. The insertSensorValues()

62

7. Database

method checks the native type of the sensor values and, if it is a number, the
method calls insertSensorValueIntoHashtable().

The method insertSensorValueIntoHashtable() includes an algorithm for data
compression. These algorithm affects only sensor values, which have a number as
native type2. For the compression the method stores temporarily the sensor values
in the hashtable sensorValue.

The behavior of insertSensorValueIntoHashtable():

Listing 7.2: Insertion sensor values into the hashtable
1 if(sensorID of the sensor value not in hashtable){

2 add the sensor value to the hashtable

3 if(sensor value == 0){

4 insert an ’on -stamp ’ into the database

5 }

6 }

7 else{

8 if(hashtable entry of sensorID == sensor value){

9 set the stoptime of the hashtable entry to the timestamp of the sensor

value

10 }

11 else{

12 if (hashtable entry of sensorID != 0){

13 insert the hashtable entry into the database

14 }

15 add the sensor value to the hashtable

16 }

17 }

An uncompressed table is shown in figure 7.8.

In the table the start time and the stop time are saved as Java.lang.Long type.
That allows to save the datestamp of the sensor values precise up till the millisec-
ond. The time data types of the MySQL database do not provide saving time such
accurately.

Figure 7.8 shows that the ’sensor1’ sent: 0, 0, 0, 3.1, 3.1, 3.1, 0, 0, 0, 3.1, 3.1 and
3.1. The ’sensor2’ sent only three times the value 4.1. Figure 7.9 shows the table
of figure 7.8 after compression.

In figure 7.9 shows that no ’null events’ are in the table. The first entry of the
’sensor1’ is an ’on-stamp’. The three values 3.1 are compressed to one entry. The
start time is the timestamp of the first value, the stop time is the timestamp of the

2Sensor Values, that are strings, are stored uncompressed in the database by the method
insertSensorValues().

63

7. Database

Figure 7.8.: Uncompressed database table

Figure 7.9.: Compressed database table

third value and the counter is three. For the ’sensor2’ there are only two entries.
The first three values are compressed to one.

Saving no ’null events’ generates a problem. If the table contains no events for
requested time you does not know, whether the sensor sent really ’null events’ or
the sensor was off. So every time sensor events are sent, insertSensorValues()
calls checkHashtable() (see section 7.3.2) which sets an ’off-stamp’, if a sensor
value is older than 10 minutes.

Checking the Hashtable

The compressing of the data generates the problem, if the database contains no
sensor values, one does not know, if the sensor was unreachable or the sensor
measured are ’nulls’. So one has to check and save whether a sensor works. This

64

7. Database

is done by the method checkHashtable().
Every time new values from the sensors are received, the method is called to check
the entries in the hashtable. If there are values, which are older than 10 minutes,
they were inserted to the database, also an ’off-stamp’ were set in the database
and the hashtable entries were deleted. The sensors does not send any values.

Clearing the Local Cache

The local cache is a hashtable called sensorValues and is used for storing sensor
values temporarily before compression (section 7.3.2). This hashtable contains at
least the last sensor value of a sensor. While shut down the server the entries
of this hashtable have to be inserted into the database, otherwise they are lost.
Therefore the method clearLocalCache() is called.

Reconstructing Sensor Values

Because the database contains compressed sensor values you need of
course a method to decompress these entries. This is done by
reconstructSensorValues().
With getSensorValues() you get all stored sensor values of a specified sensorID
from the database. Optionally you can specify a time interval. So this method
returns only values, which are measured in this interval. If the native type of
the sensor values is a number, the reconstructSensorValues() method is called.
Those needs as parameters an ArrayList of the selected entries, the sensor value
before the first selected one, the start time and the end time given by the user.

The reconstructSensorValues() method processes tho following steps:

1. Calculate the time interval between two sensor values.

2. Compare the start time (specified by the user) with the timestamp of the
first entry of the ArrayList. Only if the start time is earlier than the first
timestamp and the sensor value before is not an ’off-stamp’, ’null events’ are
generated.

3. Decompress the entries of the ArrayList while verifying the following to
conditions:

65

7. Database

• If the count of the current sensor value is one, generate one sensor value,
else the number of generated values as much as the count.

• If the timestamp difference between the sensor values is greater than
the calculated time interval (see step one), ’null events’ are generated.

4. Compare the timestamp of the last sensor value from the ArrayList with
the end time (specified by the user). Only if the following three conditions
are true ’null events’ are generated.

• The end time is later than the last timestamp.

• The difference between end time and last timestamp is greater than the
time interval of two sensor values.

• The sensor value before is not an ’off-stamp’.

5. Return an ArrayList of decompressed sensor values.

’Null events’ are generated by the method generateNullValues(). These needs
as parameters a start time and a stop time. Two sensor values with ’null’ as value
are created. Both are getting the corresponding timestamp (start time respectively
stop time).

Erasing Sensors

We are using the standard table type ’MyISAM’ of the MySQL database. It does
not support foreign keys. While creating a table the MySQL server parse for for-
eign keys, but does not save this information [MySQL and Foreign Keys]. So it is
necessary to develop methods for preserve the referential integrity.
Such a method is deleteSensor(). The ’sensorID’ in the sensor value table ref-
erences the sensor table. If you delete a sensor from the sensor table, the corre-
sponding sensor values are still in the sensor value table. So there are sensor values
of an unknown sensor. This values are unusable for the Sens-ation framework.

Therefore the deleteSensor() method does not only delete the sensor but also:

• Creates a sensor history table and writes the deleted sensor into this one.

66

7. Database

• Creates a history table for the sensor values and displaces all values from the
deleted sensor into it.

Consequently the referential integrity is still preserved.
A final erasing of sensors or sensor values is not implemented yet. If you want to
do this even though, you have to use the MySQL client.

67

8. Gateways

8.1. Web Services

8.1.1. XML-RPC

EXtended Markup Language - Remote Procedure Call (XML-RPC) is a
specification that is constructed for resolving communication between different
technical and operational environments. It uses HTTP as transport protocol
as well as xml (Extended Markup Language) for formatting data. XmlRpc can
instanciate Webservers and their Webclients to resolve communication. A typical
call looks like that.

1

2 POST /RPC2 HTTP /1.0

3 User -Agent: Frontier /5.1.2 (WinNT)

4 Host: betty.userland.com

5 Content -Type: text/xml

6 Content -length: 181

7 <?xml version="1.0"?>

8

9 <methodCall >

10 <methodName >GatewayXMLRPC.getValueVector </ methodName >

11 <params >

12 <param >

13 <value ><string >Sensor1ESBTemp </string ></value >

14 </param >

15 </params >

16 </methodCall >

This excerp shows, that the data consists of a method call that tries to start the
method getValueVector on the handler GatewayXMLRPC with a parameter of
datatype String consisting of SensorESBTemp. The answer of the call would be
much like the same but only consisting of values that are to be returned.

68

8. Gateways

The implementation of the XML-RPC client side in Java is done as fol-
lowed:

1 private XmlRpcClient xmlrpc;

2

3 try {

4 xmlrpc = new XmlRpcClient("http ://141.54.159.129:5000");

5 } catch (MalformedURLException e) {

6 System.out.println("Error initializing XmlRpcClient");

7 }

This code shows the Java implementation on the XML-RPC server:

1 try {

2 server = new WebServer (5000);

3 } catch (IOException e1) {

4 Logger.message("ERROR: Can’t start XML -RPC service. Please check if

port 5000 is available.");

5 }

An implementation of a method in Java that starts an XML-RPC call looks like
that:

1 public synchronized String getSensorXML(String sensorID) {

2 String ret = null;

3 Vector params = new Vector ();

4 params.add(sensorID);

5 try {

6 ret = (String) xmlrpc.execute("GatewayHandler.getSensorXML", params);

7 } catch (XmlRpcException e) {

8 System.out.println("GatewayXMLRPC : Error in getting Sensor as XML");

9 } catch (IOException e) {

10 System.out.println("GatewayXMLRPC : Error in getting Sensor as XML");

11 }

12 System.out.println("XMLRPC -Method called: getSensorsXML(sensorID)");

13 return ret;

14 }

The method shows how XML-RPC calls are made. The XmlRpcClient xmlrpc

has a public method execute which uses as parameters the handler’s name, by
that the method that is registered, and the methods name itself. The parameters
for the called method are added in a Vector and added to the execute call.

8.1.2. Gateway XML-RPC

The GatewayXMLRPC class is, as the name tells, the gateway for XML-RPC calls.
It is automatically installed with the server package (see 3.2.2) It is a XML-RPC

69

8. Gateways

client to the GatewayHandler class and has its own webserver, such enabling not
only to send, but also to receive calls from the handler. It can be run separately
or together with the gateway handler by setting the localgateway property in
gatewayxmlrpc.properties file to 0 or 1. It features a security mechanism for
DoS attacks, that blocks calls to the gateway handler, reducing the amount of
traffic that is passing through the server network. That is done by getting the
time difference in milliseconds from one request to the next, and comparing it
to a threshold that is determined in the gatewayxmlrpc.properties file named
timethreshold. If the timelag between the requests is to small, already collected
data from the cache is returned.

1 private synchronized SensorValue checkCritTime(String sensorID) {

2 SensorValue sv = new SensorValue ();

3 //if the sensorValue cache is not empty

4 if (cache != null) {

5 // when the cache has an entry for that sensor

6 if (cache.containsKey(sensorID)) {

7 // get the entry

8 PEntry pe = (PEntry) cache.get(sensorID);

9 if (pe != null) {

10 long savedMillis = pe.itsMillis;

11 long now = new Date().getTime ();

12 // when the time difference is smaller as the

13 // threshold , return a filled value , else an empty one

14 if ((now - savedMillis) < timethreshold) {

15 sv = pe.itsSv;

16 } } } }

17 return sv;

18 }

In the methods using this feature (namely getValueVector, getValueHashtable
and getValueHashMap) check if the value that is returned from the method is
empty. If it is, the request is forwarded to the gateway handler, if not, the value
that was given back from the checkCritTime method is returned. Everytime
data is fetched from the sensor regularly, the cache is being refreshed. Another
security feature is the user authentication. The users are compared to the en-
tries of a userdatabase the gateway handler is implementing, and therefore usage
of the classes methods is granted or not. Because the authentication is man-
aged by a HTTP construct, everytime a method is called also the user ID is
checked. To prevent the time loss that is connected with getting data from the
database, users, that were already authenticated during a session, are kept in a lo-
cal hashtable. Authentication is disabled by setting the authentication property
in the gatewayxmlrpc.properties file to ”0”. If database usage is disabled on the
gateway handler, the authentication is automatically disabled. On the client, the
setBasicAuthentication method of the XML-RPC client must be set for the au-
thentication to function. To entirely turn off the authentication, the implements

AuthenticatedHandler has to be excluded in the class declaration.

70

8. Gateways

8.1.3. AXIS

Apache’s AXIS Webservices communicate via SOAP 1.1(Simple Object Access
Protocol). AXIS uses Apache Tomcat as webservice application. Similar as in
XML-RPC, the data is wrapped into XML for submittance and therefore interop-
erational communication is made possible. It uses HTTP as transport protocol.
SOAP communication in the Sensation project was developed to guarantee future
compatibility with the W3C standards. SOAP messages consist of an envelope
which has data of the format of transmitted data, and the body which transports
the actual data. Here is an example of how AXIS calls look like.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <SOAP -ENV:Envelope xmlns:xsd="http :// www.w3.org /2001/ XMLSchema"

3 xmlns:SOAP -ENV="http :// schemas.xmlsoap.org/soap/envelope/"

4 xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance">

5 <SOAP -ENV:Body >

6 <ns1:getValueVector xmlns:ns1="http :// soapinterop.org/">

7 <sensorID xsi:type="xsd:string">Sensor1ESBTemp </testParam >

8 </ns1:getValueVector >

9 </SOAP -ENV:Body >

10 </SOAP -ENV:Envelope >

The above packet shows the SOAP call to the same method as the XML-RPC call,
namely getValueVector. It is accompanied by the parameter sensorID, of type
String which contains Sensor1ESBTemp.
In the webservice creation process a Web Service Definition Language (WSDL)
file is generated which holds all information needed for creating clients to this
specific service by showing the methods that can be run. In the case of Sensation,
the WSDL file for one method looks like this:(excerpt)

1 <wsdl:message name="registerAxisRequest">

2 <wsdl:part name="ip" type="xsd:string"/>

3 <wsdl:part name="sensorID" type="xsd:string"/>

4 <wsdl:part name="port" type="xsd:string"/>

5 </wsdl:message >

6 <wsdl:message name="registerAxisResponse">

7 <wsdl:part name="registerAxisReturn" type="xsd:string"/>

8 </wsdl:message >

The above packet shows the SOAP call to the same method as the XML-RPC call,
namely getValueVector. It is accompanied by the parameter sensorID, of type
String which contains Sensor1ESBTemp.
In the webservice creation process a Web Service Definition Language (WSDL)
file is generated which holds all information needed for creating clients to this
specific service by showing the methods that can be run. In the case of Sensation,
the WSDL file for one method looks like this:(excerpt)

71

8. Gateways

1 <wsdl:message name="registerAxisRequest">

2 <wsdl:part name="ip" type="xsd:string"/>

3 <wsdl:part name="sensorID" type="xsd:string"/>

4 <wsdl:part name="port" type="xsd:string"/>

5 </wsdl:message >

6 <wsdl:message name="registerAxisResponse">

7 <wsdl:part name="registerAxisReturn" type="xsd:string"/>

8 </wsdl:message >

In this code snippet is shown, that the registerAxis method has an entry for
the request as well as for the response. The request needs three parameters: one
String for the IP, one String for a variable called sensorID and one String for
another varibale called port. As return value it gets a String, what can be seen
at the line
<wsdl:part name="registerAxisReturn" type="xsd:string"/>

An AXIS webservice is identified by the WSDL by clients, and builds the interface
for method requests. Once the webservice is created and deployed on the Tomcat
server, its methods can be simply run by creating an instance of the webserver on
the client. This process is shown below.

1 private static AxisServer server;

2

3 private static AxisServerService service;

4

5 service = new axisserver.ws.AxisServerServiceLocator ();

6 try {

7 server = service.getAxisServer ();

8 } catch (Exception ex) {

9 System.out.println("Error: " + e);

10 }

The ServiceLocator is one of the by the WSDL2Java generated skeleton classes. It
is used for locating the service classes that implement the methods for the service.
The server is instantiated via this imported webservice classes. By simply calling
the methods that the server implements, those methods can be requested. For
more detailed information about how to create webservices and how to use them,
consult http://ws.apache.org/axis/java/index.html

8.1.4. Gateway AXIS

The AxisServer class builds the main gateway for Simple Object Access Protocol
(SOAP) connections. It implements the same basic functions (see 8.1.5) as the
XML-RPC gateway. In the axisserver.properties file entries can be set to

72

file:.

8. Gateways

declare the IPs of the AXIS webserver and the gateway handler that is requested
for data. Everytime a method request to the AXIS gateway is started, an XML-
RPC client to the server on the gateway handler is initialized, and with it, the
request is forwarded to the server classes. The communication runs over a SOAP
interface only between the client and the AXIS gateway . The AXIS gateway was
developed using Apache AXIS 1.1 and Apache Tomcat 5.028.

8.1.5. Functionality of the XML-RPC- and AXIS Gateway

For editing, the gateways can be found under the classname GatewayXMLRPC

and accordingly AxisServer. The AxisServer file can be found in the Sens-
ation Project path in the axisserver.ws package, the GatewayXMLRPC in
src.de.buw.medien.cscw.sensation.server package. The XML-RPC- and the
AXIS gateway both feature nearly the same functionality. The ”*” indicates that
the request for the method can be done for different datatypes, by replacing it
accordingly with String, Vector, Hashtable, HashMap, and sometimes XML. This
was done for increasing the compatibility with client applications. For exact re-
quest format information, the specific classes, or the JavaDoc of the project is
recommended as reference.

• authenticate(String user, String pw) : This method is only imple-
mented in the XML-RPC gateway and is used for authentication. It is called
everytime, when another method is requested on the gateway.

• check() : This method returns a String containing ”running” when the
gateway is running.

• getAllLocations*() : This method returns all location ids that sensors are
located at.

• getAllSensors*() : This method returns all sensor IDs no matter of their
location.

• getHardwareMetadata(String hardwareID) : This method returns the
hardware description of a sensor as Vector

• getSensors*(String locationID) : This method returns the sensor IDs
located at the specific location.

73

8. Gateways

• getSensorXML(String sensorID) : This method returns the XML descrip-
tion of the sensor.

• getServerDescription() : This method returns the description of the
server as String

• getValue*(String sensorID) : This method returns the last published
value of that specific sensor.

• getValues*(String sensorID) : This method is for returning all values of
a specific sensor.

• getValuesXML(String sensorID, String startDate, String

endDate) : This method returns all events of a specific sensor from
the starting date to the ending date. It is implemented for the XML-RPC
gateway. For date syntax consult the GatewayXMLRPC class.

• getAxisMessage(String ip) : This method returns the events that hap-
pened for registered sensors for AXIS clients. Therefore, its only imple-
mented in the AxisServer class.

• register[Axis](String ip, String sensorID, String port) : This
method is called registerAxis for the AXIS gateway, and register for
the XML-RPC gateway. It’s for registering a client for asynchronous ser-
vices and sensors.

• unregister[Axis](String ip, String sensorID)This method is called
unregisterAxis for the AXIS gateway, and unregister for the XML-RPC
gateway. It is for unregistering a client for a specific sensor or service.

• useDB() This method was only implemented in the XML-RPC gateway and
returns a boolean, if the database is running or not.

8.2. PHP

The PHP gateway provides three connection methods for the user:

1. Administration interface:

74

8. Gateways

You can access the registered locations and sensors of the server, create new
locations or sensors and publish sensor values. The additional features are
the graph visualization and the export of CSV data.

2. Mobile interface:
A mobile user interface to access the sensor values, display visualizations,
create new mobile sensors and publish values.

3. HTML interface:
This is a light-weight HTML interface to the server. All requests and the
parameter can send with the HTML address and the server returns only
HTML text content.

Note: Before using the PHP gateway please check that you have success-
fully installed the required components (see section 3.4.3) and start the Apache
webserver. Then open the login page of the PHP administration interface:
http://[host]/[sensation-directory]/index.php (figure 8.1).

Figure 8.1.: PHP admin tool: Login window (left) and main menu (right)

Login with the superuser name and password (see chapter 3.4.3 if you want to
change the superuser name or password), and you can choose one of the following
menu items:

75

8. Gateways

• Sensor Value Access
Display the last updated value of a registered sensor.

• Sensor Values: CSV Format
Select a location and a sensor ID. The PHP method will display all values
from start to end time. You can save these values as CSV file and import the
values into spreadsheet software (e.g. Microsoft Excel, see chapter 8.2.2).

• Sensor value visualization (BETA)
The PHP script will display the last 30 values of the selected sensor in a
graph visualization.

• Register Location
HTML form for the location registration; sends the location description as
XML file to the platform.

• Register Sensor
Register a new sensor at the platform: you can specify the sensor type and
location as well as the description, owner, native data type and other optional
parameter (see figure 8.2).

• Notify Sensor
You can send notification events for each of the registered sensors. This is
often used for testing of sensor transmissions.

8.2.1. Server Connection

The main methods to establish connections to the server are located in the
functions.inc.php file. Include this file in the PHP pages which have to trans-
mit data to the server. Furthermore you have to include the config.inc.php

and ./domit/xml domit include.php file and start each PHP page with the
session start(); command. The latter is needed to access the session member
variables.
In the file functions.inc.php you can access the method
getXMLfromServer($method, $param) to receive XML data (add the re-
mote method name as the first parameter and the parameter vector as the
second parameter) from the server (see listing 8.2.1). The script creates a new
XML-RPC client instance (line 2) connected to the server and port specified in
the session members. The method name is the string of the main service name

76

8. Gateways

Figure 8.2.: PHP admin tool: Register location form (left) and result page (right)

(GatewayXMLRPC) and the method parameter (the complete string is for example
GatewayXMLRPC.getSensorsXML). Then a new call with the parameters is created
(line 5) and the script opend the connection to the server (line 6). At the end of
the method, the response string is converted to a XML document (line 10).

1 function getXMLfromServer($method , $param){

2 $xmlrpc_client = new xmlrpc_client("/", $_SESSION[’rpc_server ’], $_SESSION[’

rpc_port ’]);

3 $method = $_SESSION[’rpc_service ’] . "." . $method;

4

5 $call = new xmlrpcmsg($method , $param);

6 $response = $xmlrpc_client ->send($call);

7

8 $value = $response ->value ();

9 $convert_string = trim($value ->scalarval ());

10 return convertToXMLDocument($convert_string);

11 }

The convertToXMLDocument() replaces the characters for XML braces, creates a
new XML document and parses the XML string.

77

8. Gateways

Figure 8.3.: PHP admin tool: Register sensor form (left) and event notification
form (right)

1 function convertToXMLDocument($toConvert){

2 $toConvert = str_replace("<","<",$toConvert);

3 $toConvert = str_replace(">",">",$toConvert);

4 $document =& new DOMIT_Document ();

5 $success = $document ->parseXML($toConvert , true);

6 if($success == 1){

7 return $locations;

8 }

9 return null;

10 }

The other communication methods in the functions.inc.php file are working in
a similar way. These are the methods registerOnServer($method, $param) for
the sensor and location registration process and getDataFromServer($method,

$param) for retrieving data from the server.

78

8. Gateways

Figure 8.4.: PHP admin tool: Sensor value access, select location (left) and the
desired sensor from the list (right)

8.2.2. CSV Data and Excel Import

You can choose the menu point ”Sensor Values: CSV Format” to get a list of
sensor values in CSV1 format. Select the location on the first tab page and the
desired sensor on the second tab. The values will be read from the server database
and displayed in the textbox of the third HTML tab page website. You can change
the period of time of the sensor values you need.
To import the CSV values into a spreadsheet software like Microsoft Excel, just
follow the subsequent procedure:

1. Copy the values in the textbox (Windows: Ctrl+A, Ctrl+C. OS X: Ap-
ple+A, Apple+C), open a new textfile in the editor (e.g. TextEdit, Notepad),
paste the data (Windows: Ctrl-V. OS X: Apple+V) and save the textfile as
data.csv.

2. Open Microsoft Excel and open a new spreadsheet document.

1CSV = Comma Separated Value File Format

79

8. Gateways

3. In the Data menu select Import data...

4. In the file dialog choose directory you have saved the CSV file and select the
file: data.csv. Click OK.

5. Click Next and select on the second import assistant page the ”Comma” as
separation character. Finish the import assistant dialog by clicking Finish.

6. The data should now be imported into the excel spreadsheet file.

7. Select the first column (by clicking the ”A” in the headline), right-click the
column headline and select the menu point Cell Format....

8. In the textfield for the data format insert: JJ-MM-TT hh:mm:ss (figure 8.5)
and click the OK button.

Figure 8.5.: Excel CSV import: CSV import assistant dialog (left) and the data
format dialog (right)

The CSV data is now successfully imported into your Excel spreadsheet document.
You can now generate a graph viualization (figure 8.6):

1. Select the two columns you have imported before (clicking the headline of
the first column and drag the mouse pointer to the second column).

2. Select the graph icon in the toolbar

3. In the graph type dialog window select the ”Points (XY)” graph on the left
side and the ”Connected lines” viualization on the right side.

80

8. Gateways

4. Finish the graph assistant dialog.

Figure 8.6.: Excel graph visualization: The graph type dialog (left) and the fin-
ished graph (right)

In figure 8.7 and 8.8 are some examples of the generated graph visualizations.

8.2.3. Mobile Portal

As a different method for mobile device to connect to the server infrastruc-
ture we developed a mobile portal. To start the portal website open the file
[ApacheIP]:[ApachePort]/mobile.php. The portal is created with the PHP
scripting language and HTML code is created2.
The figures 8.9 and 8.10 illustrate the screens of the mobile device portal page.
The methods for data access are the same as in the main PHP classes.

8.3. HTML

The HTML gateway is a light-weight access method to the platform. This
gateway enables the access to location information, sensor discovery and sensor
values via the GET method of a HTTP request. For clients that can not send
XML-RPC requests or with low capacity CPUs (and therefore slow XML parsers)

2Instead of creating HTML content (that is only accessible of mobile devices with an state of
the art webbrowser) it is conceivable to create WAP pages. This could be implemented in
future releases of the Sens-ation platform.

81

8. Gateways

Figure 8.7.: Excel graph visualization: Temperature variation (overview on the
top, detail view on the bottom)

this is a access method to the infrastructure without the overhead of XML data.
Access the HTML gateway with the address http://[host]/

[sensation-directory]/ port.php, the commands are specified with the
commands parameter and all additional parameters are added to the address.

• port.php?command=getvalue&sensorid=[id]

Get the last submitted value of the selected sensor. Only the event value
will be displayed (without datestamp or sensorID)

• port.php?command=getsensors

Get all registered sensors, as string separated list (e.g.
”Sensor1|Sensor2|AnotherSensor”).

• port.php?command=getlocations

Get all registered locations, as string separated list (e.g. ”Loca-
tion1—Location2”).

• port.php?command=notify&sensorid=[id]&event=[message]

Notification method for new sensor events; the missing datestamp will be

82

8. Gateways

Figure 8.8.: Excel graph visualization: Movement detection sensor, three graph
variations

completed with the current server time.

• port.php?command=notify& sensorid=[id]&

datestamp=[iso8601-date]]& event=[message]

Notification method for new sensor events, with the datestamp in
ISO-8601 format (yyyy-MM-dd hh:mm:ss, e.g. 2005-12-30 22:12:17)
[ISO 8601 Date and Time]

Figure 8.9.: Mobile portal: start page (left), client menu (centre) and sensor menu
(right)

83

8. Gateways

Figure 8.10.: Mobile portal: sensor value access (left), remote control (centre) and
sensor notification form (right)

This gateway can easily be extended with additional methods, e.g. more complex
sensor discovery or sensor/location registry. Furthermore an integration of security
functions will be an essential part of future extensions.

84

9. Clients

We have developed various clients for Mac OS X and Windows platform to demon-
strate the easy access of clients to sensor values at the platform. We have imple-
mented these clients with Java, AppleScript OS X scripting language and J2ME.

9.1. XML-RPC

The XML-RPC client (XMLRPCClientGUI) is a rapid prototyping development.
It consists of a main GUI which has on the left side the interaction interface
and on the right side the text window for user feedback. As the name says, it
communicates with the server via the XML-RPC gateway. In the top textfield the
adress and the port of the XML-RPC gateway have to be entered. If you click
”Connect” and no error occures, the other buttons are enabled for interaction.
On the other buttons basic interaction with the server is made possible. You can
get a list of sensors and get values that the sensors have published. A special
feature is resembled in the ”register” button: The client is not only initialized as a
client to the XML-RPC gateway, but also as Webserver to be able to receive calls.
The resulting observer pattern is used in the notification mechanism, that tells
clients of events that happened on sensors that they were registering for. In the
register method, the IP and the port of the registrating client are sent with the
name of the sensor to the XML-RPC gateway. The gateway handler which finally
receives the call, is able to build up a backing call with the sent IP and port to the
client. This is done by initializing an XML-RPC client on the XML-RPC gateway,
which contacts the waiting XML-RPC server on the client. A security mechanism
prevents the user from quitting the client without unregistering. Everytime a user
is registering for a sensor or service, its name is put in a local Hashtable. As
soon as the program is quitted, the ”exit” method takes effect by checking first
the local registry, if there is any sensor still registered, and unregisters for them
automatically. The XML-RPC client needs as libraries: XML-RPC 1.1, and the
SensorValue class from the Server.jar package.

85

9. Clients

Figure 9.1.: The XML-RPC client GUI

9.2. AXIS

The AXIS client is made of a nearly similiar GUI and also features nearly the
same functionality as the XML-RPC client. Because it needs to know where the
gateway is, it has a axisserver.properties file attached, that tells the server
class, where to find the AXIS gateway and the gateway handler. The notification is
passive, that means that you will have actively to click the ”get Events” button to
get the events that were saved on the server in the notifaction process. The AXIS
client needs the following libraries: XML-RPC 1.2b1, AXIS 1.1, Xerces 2.5.0,
XStream 1.0.2, JDOM 1.0, and the with the packet included axisserver.jar

which contains the AXIS gateway classes.

9.3. Moving Awareness

These are also Java clients, which using the XML-RPC gateway to get sensor
values and exec calls for execute internal AppleScripts. ’Observer’ in the name
of the clients refer to the operating range and not to the observer pattern. They

86

9. Clients

Figure 9.2.: The AXIS client GUI

monitors the movement in a remote location by controlling the speed of an
animation or, if they runns on a Mac OX, the volume of the computer.

The clients looks similar, but there’s a decisive difference. The PollingClient

requests the sensor values from the server in a specified timeinterval. Therefore
responsible is the run method. This method requests the present values, set the
variable, which control the speed or the volume and calls the methods for the
feedback (getSoundEvent, getVisuEvent).
The ListeningClient registers 4.4 themself for the events of a sensor and listens
to the set port for the sensor values. So it has got the methods register and
unregister and for the listening this client instantiate a WebServer. The method
notify gets the sensor values and calls the feedback methods.

87

9. Clients

9.4. Chart

The chart client uses XML-RPC to register to all available sensors and is notified
everytime an event happens. It’s functionality is adapted from the XML-RPC
client. It lists the amount of events that give back integers in comparison to their
occurrence in percent in a pie chart. It also displays the level of noise and movement
in three steps: high, intermediate, and low, to give an impression of what kind of
atmosphere has been resolving in the room. The same is done with the movement
values in the room, also represented in three bars, high, intermediate movement
and low movement.

9.5. AppleScript

Beyond the Java software clients we have implemented a client application written
in the Apple OS X scripting language: AppleScript [AppleScript Documentation].
With AppleScript you can use the scripting port of many standard OS X
applications, e.g. to automate iTunes (play music), Safari (open website) or iChat
(start video conference). To illustrate the connection between these operating
system scripting functions and our platform we have been developed the following
software tool.

9.5.1. Notification Service

The notification service tool is a connector between the Sens-ation platform and
the OS X operating system. It uses the scripting commands to control the system
applications of OS X, e.g. Safari webbrowser, iChat or iCal.
On the left side of the tool dialog you can choose the sensor that ’activates’ the
system event. This sensor will be observed and if an event occurs, the notififcation
service tool activates (or controls) the selected application. The right side of the
tool dialog is to specify the scripted application: you can start Safari browser win-
dow and open a website, play a audio message or start the iCal calendar software.
To start the application click the Run button (but please verify that you have
entered the correct server in the lower left corner of the dialog window).

88

9. Clients

Figure 9.3.: AppleScript notification service

9.5.2. XML-RPC Connection

For the connection to the Sens-ation server from within the AppleScript applica-
tion, we use the call xmlrpc method. In listing 9.1 you can see the getValue

method of the notification service script. With the statement tell application

[server:port] (line 5) you can establish the connection to the server and execute
the XML-RPC call (line 6). Specify the two needed parameters: the remote class
module (GatewayXMLRPC) and the method name (getValueString). The result
of the XML-RPC call will be stored in the this result variable and we return
this result with a true statement (line 9). If any error occurs, the on error block
(line 10) will be executed: the method returns the error message and the false
statement. The developers manual for XML-RPC and SOAP programming with
AppleScript can be found at [AppleScript XML-RPC and SOAP].

Listing 9.1: Initiate a XML-RPC connection using AppleScript
1 on getValue(sensorID)

2 try

3 set method_parameters to sensorID

4 using terms from application "http :// www.apple.com/placebo"

5 tell application "http ://" & IP & ":" & Port

6 set this_result to call xmlrpc {method name:"GatewayXMLRPC.

getValueString", parameters:method_parameters}

7 end tell

8 end using terms from

9 return {true , this_result}

10 on error error_message number error_number

11 set the error_message to "The script was unable to establish a connection"

12 return {false , error_message}

89

9. Clients

13 end try

14 end getValue

In a similar way the script will connect to the Sens-ation server to retrieve the
locations and available sensors.

9.5.3. Scripting Applications

The second part of the script, beyond the retrieving of sensor values, is the script-
ing of the Mac OS X applications dependent on the values. The scripting process
(listing 9.2): Start with the tell application "[application]" statement (line
2, here the iChat application1) and end with the end tell statement (line 8). Be-
tween add the application scripting commands, e.g. activate for starting the
application, or send video invitation to account "[name]". More informa-
tion about the scripting: [AppleScript Documentation].

Listing 9.2: Scripting the iChat application
1 on startIChat ()

2 tell application "iChat"

3 activate

4 log in

5 set status message to "Available for Video Chat"

6 set status to available

7 send video invitation to account "Cooperative Media Lab"

8 end tell

9 end startIChat

With the second example the safari webbrowser is scripted (listing 9.3). The
parameter of the function (line 1) is the string of the URL that has to be opened.
Then the function validates that the URL is not already in a open window (line
1-8). If the script can not find the URL, a new browser window will be opened
(line 12-13).

Listing 9.3: Scripting safari webbrowser
1 on openWebsite(urlName)

2 tell application "Safari"

3 set isAlreadyOpen to false

4 set urlList to URL of every document

5 repeat with urlElement in urlList

6 if urlElement is equal to the urlName then

7 set isAlreadyOpen to true

8 end if

1An overview of the scriptable apllications of OS X can be found at: http://www.apple.com/
applescript/apps/

90

http://www.apple.com/applescript/apps/
http://www.apple.com/applescript/apps/

9. Clients

9 end repeat

10

11 if isAlreadyOpen is false then

12 make new document

13 set the URL of document 1 to urlName

14 end if

15 end tell

16 end openWebsite

9.6. Clients: Mobile Client

9.6.1. Introduction

In this documentation I will describe first, what is to be considered to start the
program and which technologies were used. In the second part I will explain the
implementation of this program.

9.6.2. Installation

Recommend components.

Eclipse 3.0 or Eclipse 3.1 [Eclipse Foundation]
Wireless Toolkit 2.2 [J2ME Wireless Toolkit]

Eclipse 3.x and Wireless Toolkit 2.x

1. Install and start Eclipse 3.0 / Eclipse 3.1
2. Configure Eclipse for J2ME:
In the Eclipsemenu: ”Help”, ”Software Updates”, ”Find and Install”, ”Search for
new features to install” and press ”Next”.
Press ”New archived site” and select the file ”eclipseme.feature 0.6.1 site.zip”.

This tool is available on http://eclipseme.sourceforge.net/

Select and install this tool in Eclipse.

91

http://eclipseme.sourceforge.net/

9. Clients

In the Eclipsemenu: ”Window”, ”Preferences”, ”J2ME”, ”Platform Compo-
nents”, rightclick on ”Wireless Toolkits” and click ”Add Wireless Toolkit”,
Browse to the folder of the Wireless Toolkit 2.2 and press ”Ok”.

3. Import the source code in a j2me-project, package ”midlet”.
4. Import the libraries. rightclick on the project, ”Properties”, ”Java Build
Path”, ”Libraries”, ”Add external JARs..” - Add the library kXML-RPC full.zip

kXML-RPC:
http://kxmlrpc.objectweb.org

http://kxmlrpc.objectweb.org/software/downloads/current/kxmlrpc

full.zip

If you have problems with that - be sure that the classpath is linked to a
full jdk-installation. In the Eclipsemenu: ”Window”, ”Preferences”, ”Java”,
”Installed JREs”; Look for location of J2RE! Press edit, and browse to a full
JDK-installation like ”j2sdk 1.4.2”.

5. Import the images: The images are available on CVS.
”../sensation/Pictures/MobileClient”

Put them into folder ”../workspace/projectname/verified/classes/”.

Now compile the project as J2ME-project. Mainclass is ”MidletMain.java”.
Check, if profile is MIDP 1.0.

For more information about the installation, please check

http://eclipseme.sourceforge.net/docs/installation.html

Wireless Toolkit 2.x

1. Install the Wireless Toolkit 2.x
2. Start the jad-file ”Mobile.jad”. The only requirement is, that the jar-file ”Mo-
bile.jar” exist in the folder of the jad-file!

92

http://kxmlrpc.objectweb.org
http://kxmlrpc.objectweb.org/software/downloads/current/kxmlrpc_full.zip
http://kxmlrpc.objectweb.org/software/downloads/current/kxmlrpc_full.zip
http://eclipseme.sourceforge.net/docs/installation.html

9. Clients

Emulators for Mobile Devices

This program is optimized for the mobile-phone Nokia 6230. To use this program
in an emulator for this type, please download the emulator (S40 DP 2.0 SDK) at:

http://www.forum.nokia.com/main.html

http://www.forum.nokia.com/main/0,,016-2062,00.html?model=6230

To start the program, press ”File” in the menu and then press ”Open..”.
Now browse to the folder of the jar-file ”Mobile.jar” select the jar-file. Then press
”Ok”.

9.6.3. Description of the MIDlet

Overview

An important aspect of the project was it to implement different clients. This
documentation describes a program, particularly for mobile devices. The mobile
devices have some special characteristics. Mobile devices have limited resources
(memory, cpu). At least a 16 or 32 bit CPU, 160 kB memory and 32 kB run-
time memory. Normally a mobile device has only a small display (128 x 96 px).
Each mobile device represents the graphical user-interface in a different way. This
program is adapted for the mobile phone - Nokia 6230. Normally the program
fits on every other mobile device, but the representation of graphics etc. can be
different because of the display-size. Another characteristic is the way to com-
municate with the server. Because of the high costs, it is not meaningful to have
a constant connection. Mobile devices also have no IP-address, so they cannot
be simply informed when an event occurs. At present it is only meaningful, to
request the sensor data in an active way. Another characteristic is the restric-
tion in programming the MIDlet. Because of the limited resources, the intention
for the programmer is to keep the program as small as possible. Therefore some
functions of the libraries, even whole libraries of java were completely omitted. In
the following section I will describe the individual important components of the
program.

93

http://www.forum.nokia.com/main.html
http://www.forum.nokia.com/main/0,,016-2062,00.html?model=6230

9. Clients

Figure 9.4.: Infrastructure of the mobile client.

Main Class

MidletMain.java

A MIDlet is a Mobile Information Device Profile (MIDP) application. A
MIDlet’s main class defines three life-cycle notification methods: startApp(),
pauseApp(), and destroyApp(). In the active state the MIDlet is active. In
the paused state the MIDlet instance has been constructed and is inactive. In
the destroyed state the MIDlet has been terminated and is ready for reclamation
by the garbage collector. The MIDlet has an Display-object, which displays the
different screens. The MIDlet has to manage its screens and switch between them.
A screen can be a Form (display different items like ChoiceGroups, TextFields
etc.), a List, a Canvas (paint on display, show images), a TextBox or an Alert.
When the program is started, the code in the method startApp() is executed.
The MIDlet provides a Display-object ”display” and displays the Canvas ”main”

94

9. Clients

on the display. This Canvas fills the background white and shows the logo of the
project.
The constructor of this class loads the background-image, adds the commands
and sets the CommandListener. Each screen which reacts to user-inputs needs
a CommandListener or an ItemStateListener. What to do, when user-input
happens is implemented in the method commandAction().
On the main screen, the user can click the Menu-button or the Quit-button.
If clicking the Menu-button, the next screen (ProgramMenu) will be opened. If
the user clicks the Quit-Button, the method destroyApp() will be called and
the program terminates. The method destroyApp() defines, what to do when
the program ends. In this case, the LocationStore and the UpdateStore will be
deleted, to configure the program for the next use.
The Main class also displays every MessageBox. MessageBoxes are important to
inform the user about any errors which occurs, or to give any other feedback. The
method message() paints the MessageBox on the display. The contents of the
MessageBox are drawn in the class Messages.
The method displayScreen() can switch the displays. The most classes in
this program are even screens (Menus etc.). This method gets an integer value
and decides, which screen will be displayed. When this method is started, the
constructor of the class which will be opened adds the implemented items to the
screen.

Figure 9.5.: Startscreen of the program.

Main Menu

ProgramMenu.java

The ProgramMenu is the main menu in this program. This class extends
the class List. That means, this class is a screen of the type List. This screen is

95

9. Clients

displayed via the Display-object in the class MidletMain. Before doing this, a
new list will be created. Afterwards the constructor inserts all items in the List
and sets the commands and the CommandListener.
The user can choose between 5 different list-items.

1. Sensormenu

2. Servicemenu

3. Preferences

4. Registrationmenu

5. Publish event

When the user has choosen a list-item and he clicks the select-button, the method
commandAction() starts. This method gets the index of the selected item and
executes the code for this item. Before starting the Sensormenu (index 0) or the
Servicemenu (index 1), the program examines whether the program is updated.
(The method isUpdated() in the class LocationHandler returns true if yes and
false if no.) If the program is updated, the menu will be opened, otherwise the
UpdateScreen will be opened. This guarantees that the program is updated while
it is used. When the user clicks ”Publish event” it is also recommend, that the
program is updated.

Figure 9.6.: The Programmenu.

96

9. Clients

Sensormenu and Servicemenu

SensorMenu.java, ServiceMenu.java

In this menus, the user can choose a sensor of a certain location. Then he
can start a task, like requesting the sensor values of this sensor or requesting
the values of a chosen service. The first step is, to choose a location from the
the ChoiceGroup which contains all available locations. After this all available
sensors for this locations are shown. Then he only need to choose one of the
sensors. When clicking a sensor, some important sensor information is shown in
a separate TextBox. The user also can update the program once again. All this
functions are listed in a menu within this form.
From the aspect of programming, the SensorMenu and the ServiceMenu are the
same. Both classes extends the class Form. I will describe, how the classes work
at the example SensorMenu.
The Form contains two ChoiceGroups, one for the locations and one for the
sensors. In addition the Form contains some StringItems, for display text in the
Form. For example the last update in form of a Date-object. The constructor in-

Figure 9.7.: 1. The last update, 2. The available locations, 3. The available sensors
for this location, 4. The sensorinfo.

serts the items in the form. The StringItems ”noLocationAlert”, ”noSensorAlert”
or ”noSensorInfoAlert” are empty but they are also inserted into the Form. For
example, if there is no Sensor available, the StringItem ”noSensorAlert” gets the
Text ”No Sensor available”. That means, this StringItems only have the function
to inform the user.
Normally the program is already updated, when the user can start the SensorMenu.
The contructor examines, when the program was updated (The method lastUp-
dated in the class LocationHandler returns a String with the last update) and
sets the date of the last update in the StringItem ”lastUpdate”. Otherwise it gets
the text ”never updated”. The StringItem ”sensorInfo” contains the description
of the chosen sensor. Then the constructor inserts the StringItems and the

97

9. Clients

ChoiceGroups in the Form. The contents of the ChoiceGroups were inserted in
the update-process of the program. Also the commands for the different tasks
and the commandListener will be added to the Form.
The most methods of this class will be used in the update process. I will describe
them in section ”Update program”.
Another important method for this screen is the method itemStateChanged(Item

item). This method will be activated, if a user clicks on an item in the Choice-
Group. When this menu is opened the first time, the user only see the available
locations in the location-ChoiceGroup. When he clicks on a location (Select-
button), the method itemStateChanged(Item item) starts. In this case, the
parameter item is the ChoiceGroup ”locations”.
Depending on the selected location, the method searches the sensors, which are
available for this location, in the sensorStore. The sensors are saved as String in
the sensorStore in a special way:

For example a sensorRecord:

1 "HK7|ID|Sensor1|Description|This is a sensor |..."

This String can be parsed with the method tokenise() in the classUtility. This
method returns an array and each splittet element of this String is an element in
the array. The first element is the name of the location (HK7), the next important
element is the third one (Sensor1). This is the name of the sensor.
This name will be inserted in the ChoiceGroup ”locations”. The method
itemStateChanged(Item item) searches all sensors of the selected location via
a while-loop and inserts them. If there is no sensor available, the StringItem
”noSensorAlert” gets the text ”No Sensors available”.
Now the user can select a sensor on the screen. If he selects a sensor, the method
searches in the ”sensorStore” for the selected Sensor and fills the StringItem with
the sensor information. How is it done? The method scans the record. The String
is parsed to an array. The method scans the array for keywords like ”ID” or
”Description” and if it finds such a keyword, the next item in this array contains
the value of this keyword.
For Example:

String in sensorRecord:

1 "HK7|ID|Sensor1|Description|This is a sensor|NativeDataType|Integer |..."

98

9. Clients

Content of the Array after the String was parsed:

1 {HK7 ,ID ,Sensor1 ,Description ,This is a sensor ,NativeDataType ,Integer ,...}

Formatted text of the StringItem:

1 LocationID: HK7

2 SensorID: Sensor1

3 Description: This is a sensor

4 DataType: Integer

5 .

6 .

The String in the records is a parsed String of the classe XMLParser. They will be
set as records after the update process.
In the SensorMenu and the ServiceMenu, the user can start the main tasks of
the program like requesting sensor values or values of services. When the user
has selected a sensor and he chooses a task, the method commandAction() will be
activated.
The user can update the program once again. This function is described in the
section ”Update Program”.
Another Task is ”Get selected”. In this case, the method finds out the type of
the selected Sensor with the method getSensorType(). This method scans the
sensor information for the entry ”NativeDataType”. Afterwards, thie minimum
value and the maximum value of the sensor will be scanned in the same way with
the method setSensorInfo("MaximumValue"). The argument for this method is
the requested information. After doing this, the database which saves the sensor
values is prepared and the screen OptionsMenu opens. In this screen, the user sets
the time between each sensor request. When clicking starting the Ok-Command

Figure 9.8.: In this screen, the time is set.

the CommandListener of this class opens the WaitScreen (described in another

99

9. Clients

section), examines the inserted time and starts the connection by opening the
method task() in the class ConnectionHandler. The method gets the arguments
”singleSensor” as task (Important for the class PrepareTasks), ”getValueString”
as called method on the server, null as locationID, the sensorID of the selected
sensor and the inserted time.
If the User selects the task ”Get Awareness”, the connection starts directly
from this class with the task ”multipleSensorsRealtime” (Important for the class
PrepareTasks). In this case, the program requests only three sensors, which are
important for the awareness. (This task is not very meaningful, because this task
depends on the location and on the embedded sensorboard.)

9.6.4. Handling of different Connections

ConnectionHandler.java

This class handles all outgoing connections. The mainly kind of Connec-
tion is XML-RPC. When a program wants to start a connection, one of the
methods...

1 public void task(String task ,

2 String method ,

3 String locationID ,

4 String sensorID ,

5 int time)

6

7 public void register(String method ,

8 String xmlString)

9

10 public void publish(String method ,

11 String sensorID ,

12 String dateStamp ,

13 String event)

14

15 public void login(String method ,

16 String login ,

17 String password)

...is called. All methods start a separate thread, which executes the connection.
It is important to do the connection not with the system thread, because of
errors while doing the connection. This prevents system crashs etc. In addition
other tasks like the Waitscreen can use the system thread. The method
task(..) is called, to request any sensor- or service data. Before the program
connects to the server to request such data, the request has to prepared in the
Class PrepareTasks. This class calls the method makeRequest(..) in the

100

9. Clients

ConnectionHandler, which starts the connection with the prepared arguments.
The other methods starts their own threads. The instructions for the threads are
implemented in the run()-methods of the threadclasses.
Each connection needs an instance of the class XmlRpcClient. The given
argument is the URL of the server.

1 private XmlRpcClient xmlrpc;

2 xmlrpc = new XmlRpcClient("http ://141.54.159.128:5000");

XML-RPC calls a method on the server and waits for the answer. The method is
given in the argument ”method”. Arguments for the called methods on the server
will be packed in a vector.

1 Vector params = new Vector ();

2 params.addElement("string -argument");

A variable gets the answer of the server. A request will be executed in this way:

1 tempVariable = "" + xmlrpc.execute("SensorPort." + method , params);

”SensorPort.” is the class on the server, method is the given method and the
vector contains the arguments. Every request to the server is executed in this way.
Only the kind of request is different. For example the login(..)-request has the
arguments ”String name, String password” and gets a String with the available
sensors and services for this account as answer. When login failed, the answer is
an empty String.
The method makeRequest(..) opens the connections for the method task(..).
The job of this method is it, to differentiate the kind of the requests (update,
request sensor- or service values, request available sensors or available locations).
One additional task when requesting a sensorValue, is to prevent errors with errors
from the sensor. The answer from the server is scanned for errors (errors contains
chars like ’[’ or ’]’) or if the answer is float, the answer will be converted in an
integer value by cutting the float value. This class only starts connections and
return the answers of the server.

101

9. Clients

Preparing the Requests

PrepareTasks.java

This class prepares different tasks and starts the connections. The main
method in this class is:

1 sensorTasks(String task ,

2 final String request ,

3 final String locationID ,

4 final String sensorID ,

5 int time)

Dependently on the first argument ”task”, it prepares the different tasks.

One task is ”getLocations”:

In this task, the locations will be requested. The main part of this task is
to handle the answer and insert the locations in the locationStore and into the
ChoiceGroups of the SensorMenu and the ServiceMenu.
If the answer of the server is not null, the method updateLocationList(answer)

with the answer of the server as argument is called. This method inserts the
available locations in the locationStore. This method also requests all sensors of
every available location and inserts them into the sensorStore. Then the method
fillLocationList() in the SensorMenu and the ServiceMenu is started. This
method inserts all locations in the ChoiceGroups of this forms, so they are
shown as items in the ChoiceGroups when the user navigates once again to the
SensorMenu or the ServiceMenu. The Task ”getSensors” is similar to the task
”getLocations”.

Another Task is ”stringSensor”:

This task is opened, when a user requests a sensorvalue, and the native
datatype of this sensor is String. Normally the values are numeric and they will
be shown in a chart-diagram. A String will be shown in a TextBox. If so, the
task requests this String from the server and opens the class ShowStringSensor.
This class extends the TextBox and inserts the text into this TextBox. This looks
like getting a SMS.

Another Task is ”singleSensor”:

102

9. Clients

This task is the main task for requesting sensor values. This task starts a
Timer and starts sensor requests in the time intervals, which were set from the
user in the OptionsMenu. Every request saves the answer from the server in the
ValueDataBase. After receiving the first answer from the server, the task starts
the class Graph, which displays the gotten sensor values. The task terminates
when the user clicks the Ok-button in the graphic-screen. If this occurs, the
method terminateConnection() starts and sets the boolean variable ”quit” to
true. The task examines the state of this variable before each request. If it is
true, the Timer cancels and the SensorMenu opens.

The other Tasks ”multipleSensorsRealtime” (Get Awareness) and ”startService”
are similar. They also request sensor values, save them in the ValueDataBase

and starts the Graphmanager. This tasks are also realized by using a Timer. The
difference is the way, how the sensor values are visualized and the kind of the
requested values.

Feedback and Messageboxes

WaitScreen.java, Messages.java

This classes inform the user and give feedback, if something happens while
he uses the program. The class WaitScreen visualizes an Animation, while
a connection is active. This is important, because a user do not know, if a
connection is active or not. In addition he do not knows, how long it lasts. In
the worst case the user starts several connection, because nothing happens on the
screen while the connection is active. The class Messages visualizes MessageBoxes
on the screen for some seconds, to inform the user if a connection failed or if a
task is ready etc.

WaitScreen.java

This class extends the Canvas-class. The constructor of this class loads the
needed images for the animation and starts the TimerTask. This Timer loops
every 200 ms and changes the represented image and repaints the Canvas to show
the new image.
This animation ends, when the user clicks the Cancel-Command or the connec-
tion was successful. If the user clicks the Cancel-Button, the connection will
be terminated by starting the method terminateConnection() in the class
PrepareTasks and the ProgramMenu will be opened. If the connection was

103

9. Clients

successful, the WaitScreen ends in three different ways.

1. When the program was updated, the update continues and the appropriate
screen will be displayed.

2. When the connection was a sensor request and the sensor had the type
Integer or Float, the WaitScreen ends and starts the Graphicsengine with
appropriate type.

3. When the connection was a sensor request and the sensor had the type String,
the WaitScreen ends and starts the class ShowStringSensor.

Figure 9.9.: The animated waitscreen.

Messages.java

Similiar to the WaitScreen, the constructor of this class loads the images
(Stopsymbol, Infosymbol), starts the Timer and repaints the screen to show the
MessageBox. The Timer is needed, to show the the MessageBox for a certain
time.
Before a task opens a MessageBox, it sets the needed parameters with the method
setVariables(..).

1 setVariables(String messageText ,

2 int time ,

3 int screen ,

4 String type)

1. String messageText: The infotext, shown in the MessageBox

2. int time: The time, how long the MessageBox will be shown

3. int screen: The screen, which will be opend after showing the MessageBox

104

9. Clients

4. string type: The type of the MessageBox (Error, Info)

Figure 9.10.: Errormessage and Infomessage.

Procedure of updating the MIDlet

In this part, I will describe the procedure of updating the program. In the
first step, the method task(..) in the class ConnectionHandler starts a new
Thread. The method run() of this Thread starts the method sensorTasks(..)

in the class PrepareTasks with the task ”getLocations”. This method requests
(ConnectionHandler.makeRequest(..)) the available locations from the server.
The server returns a String, which contains all available locations. For example:

1 "HK7|B11|Virtual Location|Warschauer Strasse |.."

If this String is not null, the date of the last update in theSensorMenu and
the ServiceMenu will be renewed. The method updateLocationList(..)

in the class SensorMenu fills all locations in the locationStore
(LocationHandler.updateLocations(..); This method fills the locations
in the ChoiceGroup of the SensorMenu and the ServiceMenu), and starts a while-
loop which requests the available sensors for every location in the locationStore
in the same way. In this case the server returns a XML-String, which contains all
sensors for the selected location and the whole sensor-description. This String will
be parsed in the class XmlParser. The main method parse(String xmlString)

returns a parsed String. The requested sensors will be filled in the sensorStore
by using the method updateSensors(..) in the class SensorHandler. This
method splits the string and puts all sensors with all information as records in
the recordstore. If a sensor has type ”other” it will be handled as service. In the
last step, the Waitscreen ends and opens the appropriate menu.

105

9. Clients

Figure 9.11.: This program informs the user about a needed update.

Registration of Locations and Sensors

RegisterLocation.java, RegisterSensor.java

Both classes extends the class Form and both classes are nearly similar to
each other. The constructor inserts the Commands and the Textfields into the
Form.

1 .

2 .

3 ensorID = new TextField("SensorID", "", 100, TextField.ANY);

4 append(sensorID);

5

6 sensorClass = new TextField("SensorClass", "", 100, TextField.ANY);

7 append(sensorClass);

8

9 description = new TextField("Description", "", 100, TextField.ANY);

10 append(description);

11

12 hardwareID = new TextField("HardwareID", "", 100, TextField.ANY);

13 append(hardwareID);

14

15 command = new TextField("Command", "", 100, TextField.ANY);

16 append(command);

17 .

18 .

19 addCommand(REGISTER_CMD);

20

21 addCommand(BACK_CMD);

22

23 setCommandListener(this);

When the user inserts the properties and when he clicks ”Register”, the Com-
mandListener produces a XML String from the properties out of the TextFields.

1 "<Sensor id="sensor1" class="Temperature">

2 <Description >This is a sensor </ Description >

106

9. Clients

3 <HardwareID >... </ HardwareID >

4 <Command >... </ Command >

5 .

6 .

7 </Sensor >"

Afterwards the CommandListener starts the method register(..) (with the
XML String as argument) in the ConnectionHandler. This method starts the
connection and registeres the sensor or the location. When the connection was
successful, the program shows a MessageBox (info- or errormessage).

Figure 9.12.: The Registerscreen.

Publication of Sensor Events

PublishSensorValue.java

This class also extends the class Form. The user navigates to this screen
from the ProgramMenu. Before the CommandListener of the ProgramMenu

opens the Publish-screen, it starts the method updateSensors() in the class
PublishSensorValue. This method inserts all sensor from the sensorStore into
the ChoiceGroup of this Form. When the screen opens, the constructer displays
the ChoiceGroup with all available sensors and a TextField, which is used to
insert the sensor event. The user can select a sensor and insert a value for this
sensor in the TextField. When he clicks the ”Publish-button”, the Comman-
dListener starts the method publish(..) in the ConnectionHandler. This
method starts the connection and publishes the sensorvalue for the selected sensor.

1 connectionHandler.publish("notify",

2 sensor ,

3 dateStamp ,

4 event);

107

9. Clients

The first argument is the called method on the server. The second argument is
the name of the selected sensor. The third argument is a generated datestamp as
String and the last argument ist the sensorvalue of this event.
When the connection was successful, the program shows a MessageBox (info- or
errormessage).

Figure 9.13.: The Publishscreen.

The Graphicsengine

Graph.java

This class extends the class Canvas. This class is called after or during a
sensor- or service request. When the WaitScreen ends in a graph, it calls
the Graphicsengine. Before a graph is displayed, the WaitScreen sets some
properties. The method setDiagramType(String type) sets the type of the
diagram (service awareness, simple sensor values, multiple sensor values). The
method setMinMax(int minValue, int maxValue) sets the minimum- and the
maximumvalue of the selected sensor (Taken from the sensor description). The
method setSensorInfo(String sensorName) sets the name of the selected
sensor. The method setPosition(int pos) is needed, to synchronize the
repainting of the Graphicsengine with the sensor requests.
While the Graphicsengine displays this sensor values (taken from the valueStore
- ValueDataBase), the certain task request sensor values and fills the valueStore
with new values. The Graphicsengine repaints the Graph every few seconds and
gets all new values. The services will be repaintet without a pause. This will be
done until the user clicks the Ok-button.
I will describe one diagram in detail. The others are described in the sourcecode.

Diagram 1 - simple sensor

108

9. Clients

Split the display in fields.

1 int x1 = getWidth ()/11;

2 int y1 = getHeight ()/13;

Paint the whole background darkgrey and the background of the chart in lighter
gray.

1 g.setColor (160, 160, 160);

2 g.fillRect(0, 0, getWidth (), getHeight ());

3

4 g.setColor (220, 220, 220);

5 g.fillRect(x1 , y1*2, x1 *(10) , y1 *(10));

Now the requested sensorvalue gets a percentual value dependently to the
maximumvalue of the sensor. Remember: J2ME do not supports Float. Maybe
the percentual Value is not exact.

1 worth = (valueDataBase.getValue (1) *100) / max;

Now the color of the filled bar is setted, dependently of the sensorvalue.

1 g.setColor (41* worth /100, 186* worth /100, 253* worth /100);

Afterwards the bar and a lighter grey outline will be paintet, depending on its
position.

1 g.fillRect(i*x1 ,

2 (12*y1) -(((10*y1)*worth)/100) ,

3 x1 ,

4 ((10* y1)*worth)/100);

5 g.setColor (240, 240, 240);

6 g.drawRect(i*x1+1,

7 (12*y1) -(((10*y1)*worth)/100) ,

8 x1 -2,

9 ((10* y1)*worth)/100);

Then the inscription will be paintet, the present position in orange.

1 g.setColor(0, 0, 0);

109

9. Clients

2 g.drawString(String.valueOf(i),

3 i*x1+2+1,

4 (12*y1)+1,

5 Graphics.TOP | Graphics.LEFT);

6 g.setColor (255, 255, 255);

7 g.drawString(String.valueOf(i),

8 i*x1+2,

9 (12*y1),

10 Graphics.TOP | Graphics.LEFT);

11 g.setColor (239, 123, 32);

12 g.drawString(String.valueOf(position),

13 position*x1+2,

14 (12*y1),

15 Graphics.TOP | Graphics.LEFT);

After this, the program paints the coordinates, the range of the sensor values and
the name of the sensor.

1 for (int i=0; i < getWidth ();i=i+x1) {

2 g.drawLine(i,(2*y1),i,y1*12);

3 }

4 for (int i=2*y1; i < y1*13;i=i+y1) {

5 g.drawLine(0,i,getWidth (),i);

6 }

7 g.setColor (255, 255, 255);

8 g.drawString(String.valueOf(max),

9 1,

10 (2*y1),

11 Graphics.TOP | Graphics.LEFT);

12 g.drawString(String.valueOf(min),

13 1,

14 (11*y1),

15 Graphics.TOP | Graphics.LEFT);

16 g.setColor(0, 0, 0);

17 g.drawString(sensorName ,

18 2,

19 2,

20 Graphics.TOP | Graphics.LEFT);

21 g.setColor (255, 255, 255);

22 g.drawString(sensorName ,

23 1,

24 1,

25 Graphics.TOP | Graphics.LEFT);

This will be repaintet once again, when a new sensorvalue is present.

The XML-Parser

XML-Parser.java

110

9. Clients

Figure 9.14.: The visualization of the given sensor values. 1. and 2. The simple
sensor request, 3. Get awareness.

This class is a utility, used to parse the XML sensor descriptions from the
server. The main method is parse(String xmlString). This method gets such
a XML String and returns a String with the parsed important elements.

XML String:

1 <Sensors >

2 <Sensor id="ServiceMessenger" class="Service">

3 <Description >Notification of an messenger presence event.</Description >

4 <HardwareID />

5 <Command />

6 <LocationID >VirtualLocation </ LocationID >

7 <Owner >Cooperative Media Lab </Owner >

8 <Comment >Notification occurs , when a messenger presence information is

registered .</Comment >

9 <AvailableSince >2005 -01 -01 10:00:00 </ AvailableSince >

10 <AvailableUntil >2005 -12 -01 12:00:00 </ AvailableUntil >

11 <SensorActivity activity="active" />

12 <NativeDataType >String </ NativeDataType >

13 <MaximumValue >0.0</ MaximumValue >

14 <MinimumValue >0.0</ MinimumValue >

15 </Sensor >

16 </Sensors >

The parsed String:

1 ID|ServiceMessenger|Type|Service|Description|Notification of an messenger

presence event .| NativeDataType|String|MaximumValue |0.0| MinimumValue |0.0|

XmlParser initializes an instance of ByteArrayInputStream with the XML-String
as input. Then it initializes an instance of XmlParser.

1 ByteArrayInputStream bin = new ByteArrayInputStream(xml.getBytes ());

2 XmlParser parser = new XmlParser(new InputStreamReader(bin));

3 ParseEvent event = parser.read ();

111

9. Clients

This Stream will be parsed until the end.
A XML-String consists of start-tags, end-tags, whitespaces, text and some
other components. For example: When a start-tag ”Sensor” is determined, the
parser takes the name of the sensor and inserts it in the output-string. This
output-String is prepared for the tokeniser in the class Utility.

1 title = "ID|" + event.getAttribute("id").getValue () + "|";

2 output = output + title;

When the whole XML-String is parsed, the method returns the output-String.

The library for the XmlParser is contained in the XmlRpcLibrary. [kXML-RPC]

Handling of requested sensors, locations and sensor values

Sometimes the program has to store data like sensors and services, locations, sen-
sor values, programsettings etc. A MIDlet cannot write any files to store date
permanent. The only possibility to store data in a permanent way are Record-
Stores. RecordStores are created in platform-dependent locations, which are not
exposed to the MIDlets. The naming space for RecordStores is controlled at the
MIDlet suite granularity. MIDlets are allowed to create multiple record stores, as
long as they have different names. When a MIDlet is removed from a platform all
the record stores associated with its MIDlets will also be removed.
Records are identified within a given RecordStore by their recordId, which is an
integer value. This recordId is used as the primary key for the records. The first
record created in a RecordStore will have the recordId (1). Each subsequent record
added to a RecordStore will be assigned a recordId one greater than the record
added before it.

ValueDataBase, LocalDataBase, PreferencesDataBase: LocalData-
Base.java, ValueDataBase.java, PreferencesDataBase.java

All classes provides methods to open the stores (This builds a new instance
of the RecordStore, also if the RecordStore is already opened.), methods to close
the stores (This closes one instance this RecordStore) and methods to delete
the stores (A RecordStore cannot be deleted, while there is an instance of this
RecordStore opened.).

112

9. Clients

LocalDataBase:

This class handles a RecordeStore, to store some values which are used,
when no connection is available. When a program starts first time, this stores
have to be initialized in the PreferencesMenu. When the method initStores()

is called, 7 RecordStores will be initialized and filled with a Record (value = 0)
for every hour within this day.
When a user wants to get an average value for a certain time (Monday, 7 pm),
the method getValueGraph(int store, int index) is called with the day (1
for Monday, .., 7 for Sunday) and the hour (7 pm -¿ 19) as second argument is
called. This method returns the stored average value for awareness for this time.
The method setValue sets the average value in this RecordStore. In detail:
”count” contains the number of inserts in this record (needed to solve the
average value), ”wert” contains the present average value, ”newWert” contains
the value of the present sensor request, ”newCount” is the new number of all
requests at this time, ”newGesWert” gets the solved new average value for this
hour. This value and the new ”count”-variable will be inserted in the RecordStore.

1 int count = Integer.parseInt(temp [0]);

2 int wert = Integer.parseInt(temp [1]);

3 int newWert = Integer.parseInt(value);

4 int newCount = count + 1;

5 int newGesWert = ((wert * count) + newWert) / (newCount);

ValueDataBase

This class handles a RecordeStore, to store values after a sensor- or service
request. The methods are very simple. The method insertValue(String

value) inserts the given value at the end of the RecordStore. The method
setValue(String value, int recordId) inserts a value at the position of an
existing value and the method getValue(int recordId) returns the value of a
record in a certain position.

PreferencesDataBase

This class handles a RecordeStore, which stores some preferences of the
program like URLs etc. The methods are also the same as in the previous
classes.

113

9. Clients

SensorHandler, LocationHandler, ServiceHandler: SensorHandler.java,
LocationHandler.java, ServiceHandler.java

The function of both classes is nearly the same. This classes also got methods to
open, close and delete their RecordStores.

SensorHandler, ServiceHandler

This classes handles a RecordeStore, which stores the available sensors after
the program was updated. The method updateSensors(String locationID,

String objects) opens the RecordStores, parses the given objects-String and
inserts every sensor in an own record. The String objects contains the sensors in
this way:

1 "|sensorID|value of sensorID|sensorClass|value of sensorClass |...|$|sensorID|

value of sensorID |..|$|.."

First step is to split all sensors within this String. Second step is to split all sensor
information within this subString. This is done with 2 loops. The information
about the sensor are inserted in the RecordStore. The first element of the String
is the name of the location, then the sensor information. If a sensor has the type
”Other” it is a service and it will be inserted from the ServiceHandler in the
same way.
The method getSensor(int index) returns the String of the sensor at the given
position.

LocationHandler

This class does nearly the same. The method updateLocations(String

objects) inserts the requested locations in the RecordStore. The method
getLocation(int index) returns the String of the location at the given position.
The method lastUpdated() returns a String which contains the date of the
last update from the updateStore. At last, the method isUpdated() returns a
boolean value, if the program is already updated. This method checks, if a record
is in the updateStore.

114

10. Scenarios of using Sens-ation

In this chapter you can read two tutorials for working with the Sens-ation platform:
adding new sensors or locations to the platform and the development of a new
sensor adapter.

10.1. Adding new sensors and locations

1. Create a new java file TestRegisterSensor.java and import the package
org.apache.xmlrpc.* (you need the Apache XML-RPC library for Java
[Sens-ation Download])

2. Create the class constructor and initialize a new XML-RPC client object.
You have to change the server string to specify the IP where the Sens-ation
server is currently running.
We also add two method calls for the register methods we create in the next
step.

1 public class TestRegisterSensor {

2 /** The xmlrpc connection */

3 static XmlRpcClient xmlrpc;

4

5 /** Constructor */

6 public TestRegisterSensor (){

7 String server = "http :// localhost";

8 String port = "5000";

9

10 try { xmlrpc = new XmlRpcClient(server + ":" + port); }

11 catch (MalformedURLException e) { e.printStackTrace (); }

12

13 this.registerLocation ();

14 this.registerSensor ();

15 }

16 }

3. First we create the registerLocation() method: First we add the XML

115

10. Scenarios of using Sens-ation

description string to the parameter vector (line 4) and try the submission
(line 12).

1 public void registerLocation (){

2 Vector parameter = new Vector ();

3 String locationID = "TheNewLocation";

4 parameter.add("<Location id=\"" + locationID + "\">"

5 + "<Description >The new location.</Description >"

6 + "<Type ></Type >"

7 + "<DegreeOfLongitude >0.0 </ DegreeOfLongitude >"

8 + "<DegreeOfLatitude >0.0 </ DegreeOfLatitude >"

9 + "<HeightAboveSeaLevel >0.0 </ HeightAboveSeaLevel >"

10 + " </Location >");

11 try {

12 System.out.println(xmlrpc.execute("SensorPort.registerLocation",

parameter));

13 } catch (XmlRpcException e) { e.printStackTrace ();

14 } catch (IOException e) { e.printStackTrace (); }

15 }

4. Now we create the registerSensor() method: We use this method in an
equivalent way as the registerLocation() method.

1 public void registerSensor (){

2 Vector parameter = new Vector ();

3 String sensorID = "MyOwnSensor";

4 parameter.add("<Sensor id=\"" + sensorID + "\" class =\" ASCII\">"

5 + "<Description >Example Keyboard Sensor </ Description >"

6 + "<HardwareID ></HardwareID >"

7 + "<Command ></Command >"

8 + "<LocationID >HK7 </ LocationID >"

9 + "<Owner >Your Name </Owner >"

10 + "<Comment >The test sensor.</Comment >"

11 + "<AvailableSince >2005 -01 -01 09:00:00 </ AvailableSince >"

12 + "<AvailableUntil >2005 -12 -31 12:00:00 </ AvailableUntil >"

13 + "<SensorActivity activity =\" active \" />"

14 + "<NativeDataType >String </ NativeDataType >"

15 + "<MaximumValue ></MaximumValue >"

16 + "<MinimumValue ></MinimumValue >" + " </Sensor >");

17 try {

18 String response = (String)xmlrpc.execute("SensorPort.registerSensor",

parameter);

19 System.out.println("The registered sensor: " + response);

20 } catch (XmlRpcException e) { e.printStackTrace ();

21 } catch (IOException e) { e.printStackTrace (); }

22 }

5. All necessary methods are created, and we can write the main method:

1 public static void main(String args []) throws XmlRpcException ,

IOException {

2 TestRegisterSensor regLoc = new TestRegisterSensor ();

3 }

4 \item Now you can compile the sourcecode and run the program.

116

10. Scenarios of using Sens-ation

Note: Instead of using this software registration process, you can also add sensors
and locations with the PHP admin interface (chapter 8.2) or you can add the
description in XML format to the sensors.xml or locations.xml file

10.2. Development of a Software Sensor Adapter

1. Create a class SimpleSensor and import the package org.apache.xmlrpc.*
(you need the Apache XML-RPC library for Java [Sens-ation Download])

2. Write the class file with the constructor: we need a private member of the
type XmlRpcClient and initialize it in the constructor (change the IP if
needed):

1 public class SimpleSensor {

2 /** The xmlrpc connection */

3 static XmlRpcClient xmlrpc;

4

5 /** Constructor */

6 public SimpleSensor (){

7 String server = "http :// localhost";

8 String port = "5000";

9

10 try { xmlrpc = new XmlRpcClient(server + ":" + port); }

11 catch (MalformedURLException e) { e.printStackTrace (); }

12 System.out.println("Software sensor adapter started:");

13

14 this.inputLoop ();

15 }

16 }

3. We use a BufferedReader instance to get text from the command line. Later
you can write the event and click enter to send the message. For sending
the text to the platform we need the sendNotification() method (line 14),
that we implement in the next section.

1 public void inputLoop (){

2 BufferedReader br = new BufferedReader(new InputStreamReader(System.

in));

3 String inputLine = "";

4 boolean exit = false;

5 do {

6 System.out.print("Message :> ");

7 try {

8 inputLine = br.readLine ();

9 } catch (IOException e) { e.printStackTrace (); }

10 if (inputLine == null) {

11 exit = true;

12 } else {

13 if(inputLine.equalsIgnoreCase("exit")) exit = true;

117

10. Scenarios of using Sens-ation

14 else this.sendNotification(inputLine);

15 }

16 } while (!exit);

17 System.out.println("Software sensor adapter exit.");

18 }

4. The last method we need: the notification transmission to the platform
server. In line 4 we set the sensor ID number, so you have to know that
the sensor exists. If the sensor does not exists, the response of the notify

method is false. To add this sensor, use the first tutorial of this chapter:
”Adding new sensors and locations”.

1 private boolean sendNotification(String event){

2 boolean success = false;

3 Vector parameter = new Vector ();

4 parameter.add("MyOwnSensor");

5 parameter.add("");

6 parameter.add(event);

7 try {

8 Boolean response = (Boolean)xmlrpc.execute("SensorPort.notify",

parameter);

9 success = response.booleanValue ();

10 } catch (XmlRpcException e) { e.printStackTrace ();

11 } catch (IOException e) { e.printStackTrace ();

12 }

13 return success;

14 }

118

11. Limitations and Future Work

11.1. Known Bugs and Limitations

• XML parsing:
If there will be invalid XML descriptions sent to the SensorPort or one of
the sensor registry parts of the platform, there occurs unforeseeable errors.
Due to the missing XML schema validation the XML parser tries always to
read the XML description. There exists already a placeholder method for
XML schema validation where the XML schema comparison can be inserted
when finished.

• Sensor Registry:
The sensor and service registry is only functions in the same subnetwork,
that means the subnetmask must be the same. If not, the backing calls from
the server will not be able to connect to the client. However, active calls from
the client are still possible. Also critical is a change of IPs during having an
active asynchronous service in use. You will have to register a new getting
notified.

• Database:
The database is able to save a big amount of data. Getting this data works
fine. But you have could get problems, if you try to get more than 50000
sensor values from the database. You could get a buffer overflow. In the
Datamanager we use this maximum amount, then we decompress the sensor
values from the database. The amount of decompressed sensor values doesn’t
exceed this maximum amount.

• Mobile Client:
The application is configured for the model Nokia 6230. For a correct rep-
resentation it is recommened to use this model. Otherwise there can occur
some errors because of the display size, particularly in the representation of

119

11. Limitations and Future Work

the graphics, menus and items.
If the application is updated all locations and sensors will be received within
a simple String or a XML String. If this Strings do not correspond to the
official format, there can occur problems like inserting the wrong elements
into the RecordStores etc.
While a sensor request, the numerical values are transported as Strings. The
most possible errors of the ESB are considered in the implementation, but
if the given value of the sensor is corrupt in anyway and cannot be parsed,
there can be occur an error.

• XML-RPC Authentication:
The authentication will only work with XML-RPC 1.1 and the Apache XML-
RPC 1.1 authentication patch (see chapter 2.4).

11.2. Future Work

• XML schema:
An important part of the future work is the verification of the XML de-
scriptions and modelling them in XML schema. With these descriptions it
is possible to validate the descriptions before the parser tries to read the
documents. XML schema is necessary for: sensors, sensor values, locations,
sensor types and services.

• Sensor adapter:
Many more sensors could be integrated in the sensor platform, for example
some USB sensor boards, wireless connected sensors, connected hardware
buttons (a control panel), a virtual USB camera sensor (for movement),
”operating system” sensors (for keyboard and mouse activity) etc.
It is just necessary to implement a further XML-RPC or sockets adapter and
create the suitable sensor XML description. Perhaps the sensor XML format
(see XML schema) must be modified to fit to the new sensor types.

• Actors:
It would be interesting to create a concept for the integration of actors, e.g.
LC displays, LEDs, speakers, high-voltage sockets (to control light sources)
etc.
A possible integration of actors could be the connection as client, that listens
to a special kind of sensor (e.g. a service sensor, with intepretation) and can

120

11. Limitations and Future Work

activate or deactivate dependent on the sensor value. Another approach
can be the modification of the hardware module implementations to handle
the way back connections to the actors (sometimes integrated on the sensor
board) hardware.

• Services:
The concept of services can be extended in various ways. It can be interest-
ing to develop further services, to interpret the sensor values and aggregate
different values to new calculated values. Another aspect of the further ser-
vice development is to provide a dynamic service instantiation module that
can for example create service class instances on the basis of a XML ser-
vice description. In that case it would be helpful to create a GUI with a
drag-and-drop like assembly interface.

• WAP gateway:
Instead of creating HTML websites for the mobile devices it could be useful
to create WML WAP pages to enable the access to the server for more
mobile devices (many mobile phones can not display HTML content but
WAP pages). It is a challenge to use the advantages of WML created pages.

• Security:
The security is up to now only developed for XML-RPC connection. For the
other gateways security is not implemented yet. The security against Denial
of Service attacks is up to now only a beta. It consists merely of a function
on the XML-RPC gateway that checks wether the request was made within a
certain time period after the last call. There could be distinguished between
trusted applications which are always allowed to fully access the gateway
handler, and untrusted applications which are restricted in access.

• Sensor registry:
Up to now, all registration is done by sending the IP, the sensor and the
port the client aplication is running on to the server. Thus, only via that
way a notification can be done. For future implementation, registry and
notification could be done not only in that way, but also via email or SMS.
The way for notifying mobile cients has to be developed completely, because
mobile clients can’t be reached (up to now) by a static IP address.

• Database compression:
There is only one algorithm for compressing the database entries 7.3.2. But
all sensor values are saved in one database table. So if the server runs for

121

11. Limitations and Future Work

days and saves sensor values in the database, you will get a very big database
table. So it is worthwhile to create an alternate algorithm, for example to
select the values from the last day or the last week and compress them.

• Detection of sensor connections:
It would be helpful to implement a method that can determine the time
a sensor was connected to the platform. It could be useful to specify a
maximum time intervall for sensors to send a ”pulse” signal, so that the
server module (and the database manager) can distinguish between the fact
that the sensor only has no events to publish and the fact that the sensor is
not connected to the platform anymore.

• Mobile client visualization:
In future it is very important to handle the visulization of the service events
in a more generic way. Because of the different kind of services it will be
hard to consider the most favorable visualization for a given service event.
The developers must find a efficiently way for the communication between
the clients and the server about such problems.
Another task is to find a simple and cognitive kind of visualization for ser-
vice events. It is not meaningful to visualize service events in simple chart
diagrams.

122

A. Appendix

A.1. XML Files

A.1.1. sensors.xml

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <!-- XML Sensor descriptions for the CML SENSOR INFRASTRUCTURE -->

4 <!-- Copyright 2005 Cooperative Media Lab , Bauhaus University Weimar -->

5

6 <!-- Note: -->

7 <!-- The sensor descriptions in this file will be parsed at server -->

8 <!-- startup process. You can modify these descriptions , but you -->

9 <!-- can also disable the sensor initialization: write ’#’ in front -->

10 <!-- of the entry "server.sensorhandler.sensorfile" in the -->

11 <!-- configuration file "server.properties". -->

12

13 <Sensors >

14 <Sensor id="Sensor9ESBButton" class="Button">

15 <Description >ESB hardware button; binary value.</Description >

16 <HardwareID />

17 <Command />

18 <LocationID >HK7</LocationID >

19 <Owner >Cooperative Media Lab</Owner >

20 <Comment >This sensor is created via the XML description </Comment >

21 <AvailableSince >2005 -01 -01 10 :00:00 </AvailableSince >

22 <AvailableUntil >2005 -12 -01 12 :00:00 </AvailableUntil >

23 <SensorActivity activity="active" />

24 <NativeDataType >String </NativeDataType >

25 <MaximumValue >0.0</MaximumValue >

26 <MinimumValue >0.0</MinimumValue >

27 </Sensor >

28 <Sensor id="Sensor1ESBTemp" class="Temperature">

29 <Description >ESB temperature sensor.</Description >

30 <HardwareID />

31 <Command />

32 <LocationID >HK7</LocationID >

33 <Owner>Cooperative Media Lab</Owner >

34 <Comment >This sensor is created via the XML description </Comment >

35 <AvailableSince >2005 -01 -01 10 :00:00 </AvailableSince >

36 <AvailableUntil >2005 -12 -01 12 :00:00 </AvailableUntil >

37 <SensorActivity activity="active" />

38 <NativeDataType >Float </NativeDataType >

39 <MaximumValue >30.0</MaximumValue >

40 <MinimumValue > -20.0</MinimumValue >

123

A. Appendix

41 </Sensor >

42 <Sensor id="MobilePhoneText" class="CellPhoneText">

43 <Description >Mobile phone text information.</Description >

44 <HardwareID />

45 <Command />

46 <LocationID >Mobile </LocationID >

47 <Owner>Nicolai </Owner >

48 <Comment >Test sensor to publish text information.</Comment >

49 <AvailableSince >2005 -01 -01 10 :00:00 </AvailableSince >

50 <AvailableUntil >2005 -12 -01 12 :00:00 </AvailableUntil >

51 <SensorActivity activity="active" />

52 <NativeDataType >String </NativeDataType >

53 <MaximumValue >0.0</MaximumValue >

54 <MinimumValue >0.0</MinimumValue >

55 </Sensor >

56

57 [...]

58

59 </Sensors >

A.1.2. services.xml

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <!-- XML Service descriptions for the CML SENSOR INFRASTRUCTURE -->

4 <!-- Copyright 2005 Cooperative Media Lab , Bauhaus University Weimar -->

5

6 <!-- Note: -->

7 <!-- The service class descriptions in this file will be parsed at -->

8 <!-- server startup process. You can modify these descriptions , but -->

9 <!-- you can also disable the service initialization: write ’#’ in -->

10 <!-- front of the entry "server.sensorhandler.servicefile" in the -->

11 <!-- configuration file "server.properties". -->

12

13 <ServiceLoad >

14 <ServiceClass >

15 de.buw.medien.cscw.sensation.server.services.ServiceAwareness

16 </ServiceClass >

17 <ServiceClass >

18 de.buw.medien.cscw.sensation.server.services.ServiceMessenger

19 </ServiceClass >

20 </ServiceLoad >

A.1.3. locations.xml

1 <?xml version="1.0" encoding="UTF -8"?>

2

3 <!-- XML Location descriptions for the CML SENSOR INFRASTRUCTURE -->

4 <!-- Copyright 2005 Cooperative Media Lab , Bauhaus University Weimar -->

5

6 <!-- Note: -->

7 <!-- The location descriptions in this file will be parsed at server -->

124

A. Appendix

8 <!-- startup process. You can modify these descriptions , but you can -->

9 <!-- also disable the sensor initialization: write ’#’ in front -->

10 <!-- of the entry "server.sensorhandler.locationfile" in the -->

11 <!-- configuration file "server.properties". -->

12

13 <Locations >

14 <Location id="Mobile">

15 <Description >Mobile devices , e.g. cell phone or PDA. Can submit their

location as event.</Description >

16 <Type>inside </Type>

17 <DegreeOfLongitude >0.0</DegreeOfLongitude >

18 <DegreeOfLatitude >0.0</DegreeOfLatitude >

19 <HeightAboveSeaLevel >0.0</HeightAboveSeaLevel >

20 </Location >

21 <Location id="HK7">

22 <Description >Hauszknechtstrasse 7, 99423 Weimar. Bauhaus University.</

Description >

23 <Type>inside </Type>

24 <DegreeOfLongitude >11.345 </DegreeOfLongitude >

25 <DegreeOfLatitude >51.91 </DegreeOfLatitude >

26 <HeightAboveSeaLevel >198.0 </HeightAboveSeaLevel >

27 </Location >

28 <Location id="B11">

29 <Description >Bauhausstrasse 11, Weimar. Bauhaus -University.</Description >

30 <Type>inside </Type>

31 <DegreeOfLongitude >11.305 </DegreeOfLongitude >

32 <DegreeOfLatitude >51.9</DegreeOfLatitude >

33 <HeightAboveSeaLevel >200.0 </HeightAboveSeaLevel >

34 </Location >

35

36 [...]

37

38 </Locations >

A.2. Properties Files

A.2.1. server.properties

1 # --

2 # SENS -ATION SENSOR INFRASTRUCTURE

3 # --

4 # COOPERATIVE MEDIA LAB , 2005

5 # SERVER PROPERTIES FILE

6 #

7 # Bauhaus University Weimar , Prof. Gross

8 #

9 # $Id: server.properties ,v 1.8 2005/02/07 21 :21:13 marquar1 Exp $

10 # --

11 # Notes: This property file contains the local setup preferences

12 # for using the sensation infrastructure server , gateways

13 # and adapter modules. For a developer doumentation and

14 # more information about this project please visit

15 # http: //cml.medien.uni -weimar.de/

16 # --

125

A. Appendix

17 # Property file created: Mon Dec 13 12 :38:40 CET 2004, Nicolai Marquardt

18 # --

19

20

21

22 # PART A

23 # xx

24 # SERVER AND DATABASE CONFIGURATION

25 # MAIN CONFIG PART

26

27 # --

28 # Specify the database host address , the database name (by default you

29 # can let the name unchanged), user name and the password.

30 # --

31 database.hostIP=localhost

32 database.user=root

33 database.password=password

34 database.name=sensation

35

36 # --

37 # Use database: Values true or false

38 # --

39 server.usedatabase=false

40 # --

41 # Initialize locations and sensors from database: Values true or false

42 # --

43 server.initfromdatabase=false

44

45 # xx

46

47

48

49

50

51 # PART B

52 # xx

53 # ADDITIONAL CONFIGURATION

54

55 # --

56 # Specifications of the database table names to save

57 # the sensor descriptions , values , users , subscriptions , etc.

58 # --

59 database.sensorValueTable=sensorValue

60 database.hardwareMetadataTable=hardwareMetadataTable

61 database.locationTable=locationTable

62 database.axisEventTable=axisEventTable

63 database.userTable=userTable

64 database.userSubscribeTable=userSubscribeTable

65 database.sensorTable=sensorTable

66 database.averageSensorDataTable=averageSensorValue

67 database.superuser=su

68 database.superuserpassword=su

69 database.sensorValueHistoryTable=sensorValueHistory

70 database.sensorHistoryTable=sensorHistory

71

72

73 # --

74 # Information about the server infrastructure and

75 # some parameters for server startup. If you have a local database

76 # or a valid remote connection to a database you can enable

77 # the ’usedatabase ’ property (set to value 1).

78 # --

126

A. Appendix

79 server.description=Sens -ation server

80 server.location=YourLocation

81 server.owner=YourName

82 server.comment=Local test server for Sens -ation project

83

84 # --

85 # Use sockets: Values true or false

86 # Set to ’true’ if the server has to start the socket

87 # listening class.

88 # --

89 server.usesockets=true

90

91 # --

92 # Authenticate: Values true or false

93 # Activates or deactivates the authentication check.

94 # If activated , the server needs for each XMLRPC call a valid

95 # user and password submission.

96 # --

97 server.authenticate=false

98

99 # --

100 # Initialize CML: Values true or false

101 # If set to ’true’, the default example locations , sensors , etc.

102 # of the Cooperative Media Lab will be loaded.

103 # --

104 server.initializecmllocations=false

105 server.initializecmlsensors=false

106 server.initializecmlservices=false

107

108 # --

109 # Specifies the XMLRPC listeing port of the main server

110 # modules: GatewayHandler , SensorPort.

111 # --

112 server.xmlrpc.port =5000

113

114 # --

115 # Local XMLRPC Gateway: Values true or false

116 # If set to ’true’, the xmlrpc gateway is started on the

117 # local server and not as remote module.

118 # --

119 server.xmlrpc.localgateway=true

120

121 # --

122 # Initialize the sensorTypes

123 # Specify the XML file that contains the sensorType descriptions

124 # --

125 server.sensorhandler.sensortypefile=sensortypes.xml

126

127 # --

128 # Initialize the sensors

129 # Specify the XML file that contains the sensor descriptions

130 # --

131 server.sensorhandler.sensorfile=sensors.xml

132

133 # --

134 # Initialize the locations

135 # Specify the XML file that contains the location descriptions

136 # --

137 server.sensorhandler.locationfile=locations.xml

138

139 # --

140 # Initialize the services (class files)

127

A. Appendix

141 # Specify the XML file that contains the service descriptions

142 # --

143 server.sensorhandler.servicefile=services.xml

144

145

146

147 # GATEWAY PROPERTIES

148

149 # --

150 # Properties for the GatewayHandler. The local listener port is

151 # by default set to 5000, please only change this port if there

152 # is an important reason

153 # --

154 gateway.handler.timethreshold =500

155

156 # --

157 # Properties for the GatewayXMLRPC:

158 # Specifies the remote address and port of the GatewayHandler

159 # (server module).

160 # --

161 gateway.xmlrpc.port =5000

162 gateway.xmlrpc.ip=localhost

163

164 # --

165 # Properties for the GatewaySocket:

166 # Specify the listeing port (default is 6000) and the maximum number

167 # of clients connected to the server.

168 # --

169 gateway.socket.port =6000

170 gateway.socket.maxconnections =100

171

172 # --

173 # Specifies the default listening port of the notification

174 # service of new events. The server will contact clients

175 # through that specified port , except that they submit another port

176 # number.

177 # --

178 asynchronousclient.xmlrpc.ip =7000

179

180 # xx

A.2.2. gatewayxmlrpc.properties

1 # --

2 # Sensation Infrastructure

3 #

4 # Copyright Cooperative Media Lab , 2005

5 # Bauhaus University Weimar , Prof. Gross

6 # $Id: gatewayxmlrpc.properties ,v 1.9 2005/02/03 12 :16:12 pfaff Exp $

7 # --

8

9

10 # XMLRPC properties:

11 # this file contains the startup preferences for the xmlrpc gateway

12 # gatewayhandler: the adress of the gatewayhandler

13 # port: the port on which the gatewayhandler server runs

14 # authenticate: 0: no authentication , 1 : authentication

128

A. Appendix

15 # timethreshold: the time in milliseconds in which multiple

16 # sensor accesses are fetched from the cache

17 # --

18 xmlrpc.localgateway =1

19 xmlrpc.port =5000

20 xmlrpc.gatewayhandler=localhost

21 xmlrpc.authenticate =0

22 xmlrpc.gatewayhandlerport =5000

23 xmlrpc.timethreshold =500

129

Bibliography

[Apache Ant] The Apache Ant Project: A Java-based build tool,
http://ant.apache.org/, (website last visited: 12.02.2005) 15

[AppleScript Documentation] Apple Developer Connection, AppleScript Docu-
mentation
http://developer.apple.com/documentation/AppleScript/

(website last visited: 20.01.2005) 88, 90

[AppleScript XML-RPC and SOAP] Apple Developer Connection, XML-RPC
and SOAP support
http://developer.apple.com/documentation/AppleScript/Conceptual/

soapXMLRPC/index.html or the PDF file: http://developer.apple.com/

documentation/AppleScript/Conceptual/soapXMLRPC/soapXMLRPC.pdf,
(website last visited: 22.01.2005) 89

[Chen & Kotz 2002] Guanling Chen and David Kotz: Context Aggregation and
Dissemination in Ubiquitous Computing Systems, Dartmouth College Science
Technical Report TR2002-420, 2002 6, 51, 52

[Cooperative Media Lab Website] Cooperative Media Lab, Computer Supported
Cooperative Work, Bauhaus University Weimar, http://cml.medien.

uni-weimar.de/ 8

[Darwin 2001] Ian Darwin: Java Cookbook, First Edition, June 2001, Chapters 4
Pattern Matching and Regular Expressions, Chapter 11 Programming Serial
and Parallel Ports 49

[Eclipse Foundation] Eclipse Foundation Website, Download and Documentation
http://www.eclipse.org, (website last visited: 02.02.2005) 11, 54, 91

130

http://ant.apache.org/
http://developer.apple.com/documentation/AppleScript/
http://developer.apple.com/documentation/AppleScript/Conceptual/soapXMLRPC/index.html
http://developer.apple.com/documentation/AppleScript/Conceptual/soapXMLRPC/index.html
http://developer.apple.com/documentation/AppleScript/Conceptual/soapXMLRPC/soapXMLRPC.pdf
http://developer.apple.com/documentation/AppleScript/Conceptual/soapXMLRPC/soapXMLRPC.pdf
http://cml.medien.uni-weimar.de/
http://cml.medien.uni-weimar.de/
http://www.eclipse.org

Bibliography

[Erich Gamma et al.] Erich Gamma, Richard Helm, Ralph Johnson, John Vlis-
sides: Design Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1997 13

[ESB Documentation] Dokumentation of the Embedded Sensor Board, Freie
Universitaet Berlin, http://www.inf.fu-berlin.de/inst/ag-tech/

scatterweb net/ESB/sensorboards/doc/html/index.html, (website last
visited: 05.01.2005) 48

[ESB Terminal Commands] C++ Terminal Dokumentation terminal.c, ter-
minal.h http://www.inf.fu-berlin.de/inst/agtech/scatterweb net/

ESB/sensorboards/doc/html/terminal 8c.html, (website last visited:
05.01.2005) 49

[ISO 8601 Date and Time] ISO - International Organization for Standardiza-
tion: Numeric representation of Dates and Time, http://www.iso.org/

iso/en/prods-services/popstds/datesandtime.html, (website last visited:
29.01.2005) 32, 43, 83

[Java Code Conventions] Sun Microsystems, Code Conventions for the Java Pro-
gramming Language, http://java.sun.com/docs/codeconv/ or the PDF file:
http://java.sun.com/docs/codeconv/CodeConventions.pdf. (website last
visited: 11.02.2005) 11

[Javadoc Reference] Sun Microsystems, Javadoc Reference: How to Write Doc
Comments for the Javadoc Tool, http://java.sun.com/j2se/javadoc/

writingdoccomments/ and http://java.sun.com/j2se/javadoc/index.

jsp, (website last visited: 11.02.2005) 11, 15

[JDBC] The JDBC API
link:http://java.sun.com/products/jdbc/, (website last visited:
08.02.2005) 57

[J2ME Wireless Toolkit] J2ME Wireless Toolkit
A state-of-the-art toolbox for developing wireless applications.
http://java.sun.com/products/j2mewtoolkit/, (website last visited:
02.02.2005) 91

[kXML-RPC] kXML-RPC

131

http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net/ESB/sensorboards/doc/html/index.html
http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net/ESB/sensorboards/doc/html/index.html
http://www.inf.fu-berlin.de/inst/agtech/ scatterweb_net/ESB/sensorboards/doc/html/terminal_8c.html
http://www.inf.fu-berlin.de/inst/agtech/ scatterweb_net/ESB/sensorboards/doc/html/terminal_8c.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://java.sun.com/docs/codeconv/
http://java.sun.com/docs/codeconv/CodeConventions.pdf
http://java.sun.com/j2se/javadoc/writingdoccomments/
http://java.sun.com/j2se/javadoc/writingdoccomments/
http://java.sun.com/j2se/javadoc/index.jsp
http://java.sun.com/j2se/javadoc/index.jsp
link: http://java.sun.com/products/jdbc/
http://java.sun.com/products/j2mewtoolkit/

Bibliography

A J2ME implementation of the XML-RPC protocol.
http://kxmlrpc.objectweb.org/, (website last visited: 28.01.2005) 112

[MySQL and Foreign Keys] MySQL reference book
http://dev.mysql.com/doc/mysql/en/ansi-diff-foreign-keys.html,
(website last visited: 25.01.2005) 66

[MySQL Connector/J] MySQL Connector/JTM The JDBC driver
http://dev.mysql.com/downloads/connector/j/3.0.html, (website last
visited: 25.01.2005) 13, 57

[MySQL Database Website] MySQLTM A open source database
link:http://www.mysql.com/downloads/index.html, (website last visited:
15.01.2005) 14, 57

[Sens-ation Download] Sens-ation donwload page,
Cooperative Media Lab, Computer Supported Cooperative Work, Bauhaus
University Weimar, http://cml.medien.uni-weimar.de/tiki-index.php?

page=Sens-ation-Download 21, 22, 27, 29, 115, 117

[Sens-ation Javadoc] Javadoc Pages of the Sens-ation project,
Cooperative Media Lab, Computer Supported Cooperative Work, Bauhaus
University Weimar, http://cml.medien.uni-weimar.de/tiki-index.php?

page=Sens-ation-Download 11

132

http://kxmlrpc.objectweb.org/
http://dev.mysql.com/doc/mysql/en/ansi-diff-foreign-keys.html
http://dev.mysql.com/downloads/connector/j/3.0.html
link: http://www.mysql.com/downloads/index.html
http://cml.medien.uni-weimar.de/tiki-index.php?page=Sens-ation-Download
http://cml.medien.uni-weimar.de/tiki-index.php?page=Sens-ation-Download
http://cml.medien.uni-weimar.de/tiki-index.php?page=Sens-ation-Download
http://cml.medien.uni-weimar.de/tiki-index.php?page=Sens-ation-Download

	Introduction
	What is "Sens-ation"
	Features of the Platform

	Developer Notes
	Code Conventions
	Development Tools
	Overview of the Packages
	Libraries
	Distribution

	Installation
	Requirements
	Installation of Required Components
	Apple Mac OS X
	Microsoft Windows

	Installation of the Server
	Apple Mac OS X, UNIX
	Microsoft Windows
	Properties File

	Installation of Optional Packages
	Database
	AXIS Gateway
	PHP Gateway
	ESB Sensor Adapter

	Server Architecture
	Modules
	Utility Classes
	Console Interaction
	GatewayHandler

	Sensors, Values, Locations and Adapter Modules
	SensorHandler
	Sensors
	Sensor Values
	Locations
	Notification
	Sensor Types
	XML Descriptions
	Integrate new Sensors
	Adapter Modules
	ESB XML-RPC Adapter
	ESB Communication Parser

	Services
	Concept of Services
	ServiceHandler Module
	Development of Services in General
	Example Service: Interpreter

	Database
	Using JDBC
	Database Structure
	Implementation
	Database Package
	Special Methods

	Gateways
	Web Services
	XML-RPC
	Gateway XML-RPC
	AXIS
	Gateway AXIS
	Functionality of the XML-RPC- and AXIS Gateway

	PHP
	Server Connection
	CSV Data and Excel Import
	Mobile Portal

	HTML

	Clients
	XML-RPC
	AXIS
	Moving Awareness
	Chart
	AppleScript
	Notification Service
	XML-RPC Connection
	Scripting Applications

	Clients: Mobile Client
	Introduction
	Installation
	Description of the MIDlet
	Handling of different Connections

	Scenarios of using Sens-ation
	Adding new sensors and locations
	Development of a Software Sensor Adapter

	Limitations and Future Work
	Known Bugs and Limitations
	Future Work

	Appendix
	XML Files
	sensors.xml
	services.xml
	locations.xml

	Properties Files
	server.properties
	gatewayxmlrpc.properties

