
Nicolai Marquardt

Developer Toolkit and Utilities for
Rapidly Prototyping Distributed
Physical User Interfaces

Bauhaus-University Weimar, Germany
Faculty of Media
Media Systems Science

DEVELOPER TOOLKIT AND UTILITIES FOR

RAPIDLY PROTOTYPING DISTRIBUTED

PHYSICAL USER INTERFACES

DIPLOMA THESIS

Nicolai Marquardt Student ID: 10599
Date of birth: November 30, 1979
in Bad Nauheim, Germany

1st Reviewer: Prof. Dr. Tom Gross
2nd Reviewer: Prof. Dr. Bernd Fröhlich

Date of Submission: March 10, 2008

Nicolai Marquardt
mail@nicolaimarquardt.com
Student ID: 10599

Developer Toolkit and Utilities for
Rapidly Prototyping Distributed
Physical User Interfaces

Diploma Thesis

Cooperative Media Lab
Bauhaus-University
Bauhausstr. 11, 99423 Weimar
Germany

1st Reviewer: Prof. Dr. Tom Gross
2nd Reviewer: Prof. Dr. Bernd Fröhlich

Copyright c© 2008 Nicolai Marquardt

Abstract

Distributed physical and tangible user interfaces represent the vision of building
embedded computing systems that move off the desktop, in order that the inter-
action takes place in—rather than apart from—our everyday environment. These
systems take advantage of our practical skills and senses to provide intuitive in-
terfaces. For instance, they facilitate the communication over distance, sharing of
digital media, and interaction with electronic devices. The systems are often built
as information appliances that are specialised for a specific task. They are assem-
bled as units consisting of input controls, sensors, actuators, and displays. These
appliances, however, are still difficult to build; especially if distributed devices are
connected over a network.

In this thesis I focus on the research of methods and tools to support develop-
ers to rapidly prototype these distributed physical user interfaces. The developed
Shared Phidgets toolkit integrates distributed sensors and actuators, and provides
easy to use programming strategies for developers to build their envisioned in-
teractive systems. The runtime platform of the toolkit hides the complexity of
hardware integration and network synchronisation. The implemented developer
library as well as the introduced programming strategies address developers with
diverse development skills. To support the testing, debugging, and deployment
of appliances, diverse utilities allow the monitoring and control of all connected
components at runtime. For instance, visualisations can be used to explore the
distributed hardware components and the built appliances in their geographical
context. These utilities allow gaining insight into the internal communication
processes of the distributed infrastructure. Furthermore, the simulation utilities
facilitate the testing and debugging of the developed appliances. Finally, appli-
ance case studies illustrate the applicability of the toolkit and the provided utilities
to support the rapid prototyping process. A critical discussion of the toolkit and
the built information appliances concludes the thesis.

iv

Acknowledgements

First of all, I would like to thank my advisor Prof. Dr. Tom Gross for his support
and guidance throughout my university studies. I really appreciate his advice for
this thesis as well as his help with all my questions and concerns.

I would like to thank Prof. Dr. Bernd Fröhlich for his support and for being the
second reviewer of this thesis.

I would also like to thank Dr. Schalbe for his help; even in moments when I had
trouble with the planning of my thesis and defence.

Many thanks to Prof. Dr. Saul Greenberg for his guidance as advisor of my project
at the GroupLab, for making this great research visit in Calgary possible, and for
his helpful advice for this thesis.

I would like to thank Christian for his help, and Petra for her support with this
thesis layout as well as her answers to the many emails I have sent.

Thank you to all students at the Cooperative Media Lab, the GroupLab, and the
Interactions Lab: I’m very glad that I was able to spend the time of my university
research with these great friends.

Many thanks to Chester and Patrick for building fantastic electronic hardware
devices and for their help with questions I had about Phidgets hardware.

I would like to thank my parents for their patience and support throughout my
university studies.

Finally, I would like to thank my fiancée Kristin, for being there for me whenever
I needed her. Without her motivation I would still think about the first sentence
of this thesis.

v

Publications

Materials, ideas, and figures from this thesis have appeared previously in the fol-
lowing publication:

MARQUARDT, N. AND GREENBERG, S. 2007. Distributed Physical Interfaces with
Shared Phidgets. In Proceedings of the 1st International Conference on Tangible and
Embedded Interaction - TEI 2007 (Baton Rouge, LA, USA). ACM Press, New York,
NY, USA, 13–20.

vi

Contents

Abstract iv

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation 1
1.2 Solution Overview 3
1.3 Thesis Contributions 6
1.4 Thesis Overview 6
1.5 Conventions 8

2 Background and Foundations 9

2.1 Ubiquitous Computing 9
2.2 Tangible User Interfaces 12
2.3 Embodied Interaction 14
2.4 Context Awareness 15
2.5 Information Appliances 16
2.6 Applications and Prototype Systems 17

2.6.1 Facilitate Communication 17
2.6.2 Providing Awareness with Ambient Displays 19
2.6.3 Technology in the Domestic Space 21
2.6.4 Tangible Digital Information and Media 23
2.6.5 Summary of Prototype Characteristics 24

2.7 Prototyping Techniques 25
2.8 Chapter Summary 27

vii

Contents

3 Requirements and Toolkit Research 29

3.1 Important Toolkit Strategies 29
3.2 Developer-Centred Toolkit Design 31
3.3 Requirements of the Toolkit 34
3.4 Toolkits for Prototyping Interactive Systems 35

3.4.1 Phidgets 36
3.4.2 Context Toolkit 37
3.4.3 Peripheral Displays Toolkit 38
3.4.4 Papier-Mâché 39
3.4.5 Calder and BOXES 40
3.4.6 Equator Component Toolkit 41
3.4.7 Voodoo IO Toolkit 41
3.4.8 iStuff Toolkit 42
3.4.9 Overview of the Reviewed Toolkits 44

3.5 Chapter Summary 46

4 Runtime Platform 47

4.1 Overview of the Shared Phidgets toolkit 47
4.2 Runtime Platform Concept 50

4.2.1 Hardware Integration 50
4.2.2 Shared Distributed Data Space 52
4.2.3 Distributed Model-View-Controller 53
4.2.4 Hardware Data Model 54
4.2.5 Appliance Concept and Data Model 56
4.2.6 Data Persistence 58
4.2.7 Security and Privacy 58

4.3 User Interaction with the Platform 59
4.4 Implementation Details and Extensibility 60

4.4.1 Plug-in Architecture 61
4.4.2 Plug-in Reference Implementations 65

4.5 Chapter Summary 67

5 Toolkit Developer Library 68

5.1 Library Structure and Development Strategies 68
5.1.1 Programming via the Abstract Data Model 69
5.1.2 Hardware Proxy Object API 70
5.1.3 Interface Skins 73

viii

Contents

5.2 Appliance Development 74
5.2.1 Appliance Development Overview 74
5.2.2 High-level Events 75
5.2.3 Seamless IDE Integration 76

5.3 Programming with the Developer Library 79
5.4 Library Implementation and Extensibility 81
5.5 Chapter Summary 83

6 Development Utilities 85

6.1 Monitoring and Controlling Utilities 85
6.1.1 Network Level 87
6.1.2 Hardware Level 87
6.1.3 Appliance Level 90

6.2 Revealing the Invisible: Advanced Spatial Visualisation 90
6.2.1 Overview 90
6.2.2 Using the Infrastructure Visualisation 93

6.3 Testing with Simulated Hardware 95
6.3.1 Wizard of Oz Simulations 95
6.3.2 Toolkit Simulation Utilities 96

6.4 Scenario 98
6.5 Implementation 99
6.6 Chapter Summary 102

7 Case Studies and Discussion 103

7.1 Appliance Case Studies 103
7.1.1 Location-based Messaging 103
7.1.2 Tangible Digital Media 106
7.1.3 Remote and Ambient Awareness 110
7.1.4 Further Appliance Examples 112

7.2 Discussion and Limitations 114
7.3 Chapter Summary 118

8 Conclusions and Future Work 119

8.1 Future Work 119
8.2 Thesis Contributions 121
8.3 Closing Words 123

ix

Contents

References 124

A Development 136

A.1 System Requirements 136
A.2 Development Projects 137

B Developer Library API 139

C Implemented Hardware Devices 143

D Contents of the Thesis Project CD 156

x

List of Figures

1.1 The scope of the thesis research project. 5
1.2 Structure of the Shared Phidgets toolkit. 7

2.1 The tab prototype. 10
2.2 The paper sized pad prototype. 10
2.3 The Xerox PARC Liveboard prototype. 11
2.4 Principles of tangible user interfaces. 13
2.5 The ambientROOM project of the Tangible Media Group. 14
2.6 Ambient displays and remote awareness systems. 20
2.7 The Gate Reminder system. 22
2.8 The marble answering machine by Durrell Bishop. 23
2.9 Tangible digital information with mediaBlocks. 24

3.1 UML use case diagram. 32
3.2 Prototyping examples of the Phidgets toolkit. 37
3.3 Papier-Mâché prototyping system user interface. 40
3.4 ECT capability browser and graph editor. 41
3.5 Voodoo IO toolkit deployment. 42
3.6 Event Heap visualisation for debugging. 44

4.1 Architecture and main components of the toolkit. 48
4.2 Overview of the physical user interface components. 50
4.3 Distributed Model-View-Controller pattern. 54
4.4 Abstract hardware model in the shared data space. 55
4.5 Entries of the abstract appliance data model. 57
4.6 User interface of the Connector software. 60
4.7 UML class diagram of the plug-in architecture. 61
4.8 IPlugin interface. 62
4.9 IPluginHost interface. 63
4.10 UML activity diagram of the plug-in architecture. 64

5.1 Developer library structure and programming strategies. 69

xi

List of Figures

5.2 Using the API to create proxy objects. 72
5.3 Using properties and event handlers. 72
5.4 Creating the appliance control software. 74
5.5 High-level appliance events. 75
5.6 Methods for the seamless integration into the IDE. 77
5.7 User interface of the IDE add-in. 78
5.8 UML class diagram of the developer library. 81

6.1 Three access levels to the shared infrastructure. 86
6.2 Monitoring and controlling utilities. 88
6.3 Visualisations of distributed hardware devices. 91
6.4 Layer architecture of the spatial infrastructure visualisation. . . . 93
6.5 User interface of the spatial infrastructure visualisation. 94
6.6 Simulating hardware with Wizard of Oz interfaces. 97
6.7 Recording and reproducing hardware events. 98
6.8 Implementation of the spatial infrastructure visualisation. 101

7.1 Location-based messaging appliance. 104
7.2 Source code for location-based messaging appliance. 105
7.3 Tangible digital media appliance. 107
7.4 Appliance control user interface and simulations. 108
7.5 Source code for the navigation through an image collection. . . . 108
7.6 Source code for RFID tag event handler. 109
7.7 Awareness appliance implementation. 110
7.8 Infrastructure visualisation of the distributed hardware. 111
7.9 Source code for awareness appliance. 112
7.10 Create associations between the digital and physical world. . . . 113

xii

List of Tables

2.1 Relative effectiveness of low- vs. high-fidelity prototypes. 27

3.1 Overview of the prototyping toolkits in the related work. 45

B.1 .NET components in the developer library (A-C). 139
B.2 .NET components in the developer library (C-G). 140
B.3 .NET components in the developer library (G-S). 141
B.4 .NET components in the developer library (S-X). 142

C.1 Accelerometer hardware and API. 144
C.2 Encoder hardware and API. 145
C.3 GPS hardware and API. 146
C.4 Graphic LCD hardware and API. 147
C.5 GSM gateway hardware and API. 148
C.6 InterfaceKit and sensors hardware and API. 149
C.7 LED controller hardware and API. 150
C.8 Motor controller hardware and API. 151
C.9 RFID reader hardware and API. 152
C.10 Servo hardware and API. 153
C.11 Text LCD hardware and API. 154
C.12 Weight sensor hardware and API. 155

xiii

CHAPTER 1

Introduction

This thesis addresses the problem of how developers can rapidly prototype phys-
ical user interfaces with distributed hardware devices. To ground this research
project, the chapter begins with a motivation of the research area and a descrip-
tion of the research problem. Then, an overview of the solution to address this
problem is provided. The section that follows briefly summarises the contributions
of the thesis. Finally, the chapter is concluded with an overview of the subsequent
chapters.

1.1 Motivation

In recent years, computing technology is becoming increasingly important in
our work environment, as well as our domestic surrounding. Inspired by Mark
Weiser’s vision of ubiquitous computing [Weiser, 1991] this leads to seamless in-
tegrated computing technology in our everyday environment that is disappearing
and pervasive. Weiser envisioned a future with embedded computing technol-
ogy of different form factors that recedes into the background and provides users
helpful information exactly where it is needed [Weiser and Brown, 1997]. The
technology should work within—rather than apart from—the everyday practices
of people [Dourish, 2001].

Many of these visions of ubiquitously available systems in our environment can
be described as information appliances: they are built and optimised to support
specific tasks of the users, and are available in the environment for when they are
needed [Norman, 1999]. These information appliances enhance our social and
domestic activities, for instance by letting people browse and share digital me-

1

Chapter 1 Introduction

dia like photos, videos, and music [Fitzmaurice et al., 1995; Barrett and Maglio,
1998]; send and receive messages or reminders [Elliot et al., 2007; Sellen et al.,
2006]; stay in contact with distant family members and friends by using messen-
gers or ambient displays [Wisneski et al., 1998; Nagel et al., 2001; Mynatt et al.,
1998; Consolvo and Towle, 2005]; and assist them in the smart home [Kidd et al.,
1999; Helal et al., 2005; Babulak, 2006; Brumitt et al., 2000].

To facilitate the easy and non-disruptive interaction of users with these reactive
environments, and to “build upon users’ existing skills, rather than demanding the
learning of new ones” [Buxton, 1997], the implementations of these systems avoid
the users’ interaction with mouse and keyboard and instead move off the desktop
into people’s everyday environment [Weiser, 1991]. The systems often implement
a physical or tangible user interface that allows users to interact more intuitively by
addressing the users’ physical senses and skills [Ishii and Ullmer, 1997; Greenberg
and Fitchett, 2001]. These physical user interfaces are usually built with compo-
nents like sensors, actuators, and displays. These components enable the system
to react to explicit (e. g., touch sensors, buttons) and implicit input (e. g., motion
sensor, temperature sensor). In turn, the system can generate a response with
actuators (e. g., servo motors) or displays (e. g., small embedded colour displays).
For many information appliances these sensors and actuators are not only located
at one place. With the creation of distributed physical interfaces developers can
create a series of devices that can intercommunicate, or a device that may have
its subcomponents physically distributed in remote located places. This could be
for instance a series of sensors and actuators situated and embedded in several
rooms in the domestic space.

Researchers already have created many examples of such information appliances,
but the problem is that these technologies are still very difficult to build, espe-
cially when distributed hardware components should be integrated. Developers
of distributed physical user interfaces have to deal with a variety of complex prob-
lems when creating even a simple device [Abowd, 1996; Weiser, 1993; Greenberg
and Fitchett, 2001]. They need to build electronics hardware, write software to
access the hardware, use networking protocols, solve networking issues to syn-
chronise distributed components, manage runtime robustness and failure issues,
control the distributed hardware and appliances, and so on. Not only is this hard
to do, but in practice very few developers have all the skills required to take on
such an onerous task [Greenberg and Fitchett, 2001; Helal, 2005]. This inhibits
the developer’s ability to easily build prototypes. Experimenting with such rapid
prototypes, however, is essential for the exploration of alternative designs of the
developer’s envisioned information appliances. [Greenberg, 2007].

To make it easier for developers to deal with these issues, rapid prototyping tool-
kits facilitate the development process. Besides the low-fidelity prototyping with

2

Chapter 1 Introduction

pen and paper [Liu and Khooshabeh, 2003; Rudd et al., 1996], sketching [Bux-
ton, 2007], and storyboards [Preece et al., 2002], the development of physical
high-fidelity prototypes is an important part of the iterative design process. These
high-fidelity prototypes let designers easily explore initial designs and improve
upon good ones by letting them try multiple ideas variations across an iterative
design cycle [Buxton, 2007; Greenberg, 2007]. For the development of such a
toolkit for physical interfaces it is important to consider the previous experience
of developers with the prototyping of graphical user interfaces (GUI) [Myers et al.,
2000].

Although there already exist toolkits that facilitate the integration of local phys-
ical hardware elements like sensors and actuators into custom software [Green-
berg and Fitchett, 2001; Lee et al., 2004; Villar and Gellersen, 2007; Klemmer
et al., 2004], they do not address and facilitate the problems of the development
with distributed hardware. Moreover, existing toolkits that support the distributed
development introduce high-level abstractions that allow the assembly of new ap-
plications based on these abstractions [Salber et al., 1999; Matthews et al., 2004].
These systems, however, do not facilitate the direct composition of the underly-
ing distributed sensors and actuators to these high-level abstractions. Therefore,
a toolkit is needed that is positioned in between these two prototyping toolkit
categories and that provides adequate development utilities for the building of
prototypes with access to remotely located sensors and actuators.

1.2 Solution Overview

To address the problems described in the previous section of the chapter, the
objective of this thesis project is the development of a development toolkit that
facilitates the development of distributed physical user interfaces. The developed
Shared Phidgets toolkit hides the complexity of the hardware access, device ex-
ploration, network communication and synchronisation from the developer of in-
formation appliances. The developers can access the distributed physical sensors
and actuators through an easy to use object-oriented Application Programming In-
terface (API) of the Shared Phidgets developer library. Therewith, developers can
build their envisioned distributed information appliances, and do not have to deal
with low level implementation issues like device access and network synchronisa-
tion.

The toolkit provides a runtime platform that automatically integrates locally at-
tached hardware sensors and actuators and makes these devices accessible over
the network. Thus, developers can easily instantiate infrastructures that comprise
multiple network connected computers and all the connected physical interface

3

Chapter 1 Introduction

components. The software of the Shared Phidgets toolkit runtime platform works
autonomously in the background of all client computers, and manages the net-
work connections to a common shared data space. The synchronisation between
all client computers and the connected hardware devices is handled via data ex-
change over this shared data space.

The Shared Phidgets toolkit is built upon existing research projects of the Uni-
versity of Calgary, including the local Phidgets toolkit [Greenberg and Fitchett,
2001; Phidgets Inc., 2008]. Phidgets stands for Physical Widgets, as they repre-
sent the hardware equivalent to widgets that are available in interface builders
for graphical user interfaces (GUI). They are a collection of hardware building
blocks for physical user interfaces (e. g., motion and distance sensors, RFID read-
ers, motors, servos, displays, buttons, sliders, and more) that developers can use
with little or no electronics engineering knowledge1. The Shared Phidgets toolkit
integrates all these currently available Phidget devices, and makes them easily
accessible over the network. The toolkit is, however, not limited to Phidget hard-
ware devices and allows the easy integration of custom hardware into the runtime
architecture. Therefore, the Shared Phidgets toolkit includes the implementation
of further hardware devices, for instance graphical colour displays and receivers
of the Global Positioning System (GPS) satellite signals.

The design of the developer library follows the principle that simple things should
be easy to build, and hard or complex things should be still possible [Greenberg,
2007]. It is important to avoid a steep learning curve for programmers [Myers
et al., 2000]; instead the toolkit should address the increasing requirements of
developers with adequate tools. Therefore an important design objective of the
Shared Phidgets toolkit is a low threshold [Myers et al., 2000] for developers with
no previous experience of programming physical hardware2, in order that they
can learn how to efficiently use the toolkit. The strategies to achieve this low
threshold are the easy to use exploration and discovery utilities, object-oriented
programming proxy objects, event-based architecture, graphical interface skins,
advanced infrastructure visualisations, and a close integration into the Integrated
Development Environment (IDE). The toolkit furthermore provides a high ceiling
[Myers et al., 2000] for experienced developers3. These developers can program
information appliances more efficiently with the direct access to the underlying
shared data model, integrate custom hardware with the extensible plug-in archi-
tecture, or use high-level events for the development of abstract appliances.

1 As a former research project of the University of Calgary, the hardware is now manufactured
and distributed by Phidgets Inc. (http://www.phidgets.com/) in Calgary. The company sells
these hardware components to academic and industrial research labs for implementing phys-
ical user interfaces.

2 This category of developers is subsequently described as average developers.
3 This category of developers is subsequently described as expert developers.

4

Chapter 1 Introduction

As the testing, debugging, and deployment especially of distributed information
appliances is a difficult task for developers [Klemmer et al., 2004; Matthews et al.,
2004], a set of utilities allows the monitoring and control of all connected compo-
nents at runtime. These utilities allow the access to diverse abstraction layers of
the toolkit, for instance the direct access to the shared data model, graphical inter-
face representations for hardware devices, or an overview of all currently running
information appliances. An advanced visualisation utility can be used to explore
the distributed hardware components and the built appliances in their geograph-
ical context, and allows insights into the internal processes of the distributed
infrastructure with details on demand [Shneiderman, 1996]. Furthermore, sim-
ulation utilities support developers to test and debug appliances [Li et al., 2007;
Dey, 2000; Klemmer et al., 2004], which is also useful for the case that not all of
the used hardware devices are available. These simulation user interfaces make
it easier for developers to test the functionality of their created appliances, before
testing it with all the remotely located embedded hardware components in the
environment.

Figure 1.1: The scope of the thesis research project.

Collectively, this thesis project provides a toolkit for the development of physical
user interfaces, with focussing on the support for the prototyping of distributed
information appliances. The thesis explores the process of building prototypes
of physical user interfaces, and provides helpful utilities and visualisations to fa-
cilitate the developers’ tasks. Figure 1.1 shows the research scope of this thesis:
the research is in the field of ubiquitous computing that is a part of the human-
computer interaction (HCI) research. A specialised research area of ubiquitous
computing is the development of physical and tangible user interfaces. The thesis
addresses especially the rapid prototyping of these physical interfaces by means
of development toolkits.

5

Chapter 1 Introduction

1.3 Thesis Contributions

In summary, the thesis provides the following three major contributions:

1. Development of a runtime platform that provides access to distributed sen-
sor and actuator hardware. By introducing hardware model abstractions in
a shared data space, the platform allows the access from distributed client
machines to the shared hardware devices. The platform handles all con-
nected hardware devices autonomously, allows the easy integration of cus-
tom hardware, and provides a comprehensive set of already supported hard-
ware building blocks.

2. Providing a developer library that allows programmers to rapidly prototype
distributed physical user interfaces of information appliances. This devel-
oper library hides the complexity of the hardware and network access. This
enables developers with no previous experience of programming physical
hardware the implementation of their envisioned interface ideas. Further-
more, the toolkit extensibility and advanced development strategies address
the needs of experienced developers.

3. To facilitate the debugging of developed information appliances, the tool-
kit includes development utilities to monitor, control, and simulate the dis-
tributed hardware devices as well as the built information appliances of the
distributed infrastructure. These utilities allow the access to the diverse
abstraction levels of the runtime architecture. Furthermore, they provide
means to get insights into the internal status and events of the distributed
infrastructure.

1.4 Thesis Overview

The thesis consists of the following chapters:

Chapter 2

An overview of the research field that forms the framework for this thesis is pre-
sented in Chapter 2. It introduces the vision of ubiquitous computing, the early
prototypes of appliances, as well as the concepts of physical and tangible user
interfaces. The review of system prototypes in the related work and the overview
of prototyping techniques conclude the chapter.

6

Chapter 1 Introduction

Chapter 3

Chapter 3 introduces the requirements for a toolkit that allows the rapid proto-
typing of distributed physical user interfaces. Subsequently, the related work of
existing prototyping toolkits is discussed.

Chapter 4

This chapter introduces the concepts of the Shared Phidgets runtime platform and
gives an overview of the general toolkit architecture, as illustrated with the lower
four layers of Figure 1.2. It explains the distributed architecture and the abstract
hardware device representation in the shared data space. Finally, the details of
the platform implementation are explained.

Figure 1.2: Structure of the Shared Phidgets toolkit.

Chapter 5

This chapter explains the details of the development support of the Shared Phid-
gets toolkit, as illustrated with the upper two layers of Figure 1.2. This includes
details of the developer library, integration into the development environment,
and advanced programming concepts. At the end of the chapter, the details of the
developer library implementation and extensibility are described.

Chapter 6

To support developers with the debugging of the distributed information appli-
ances, this chapter introduces a set of advanced development utilities. These
tools access the various abstraction levels of the toolkit, as illustrated in the right
side of Figure 1.2. This includes utilities to monitor and control the shared data
model, the distributed hardware devices, and the built appliances.

7

Chapter 1 Introduction

Chapter 7

The case studies in Chapter 7 demonstrate the applicability of the toolkit. The
various information appliances illustrate the range of possible systems that can
be built with the toolkit. The remainder of the chapter discusses the created
prototypes and the overall toolkit architecture.

Chapter 8

This chapter describes possible areas for future work to continue the research
of this thesis. An overview of the contributions and the summary conclude the
thesis.

1.5 Conventions

Typesetting: A monospaced typeface is used for names of classes, interfaces, ob-
jects, as well as source code in general. The italic typesetting is used for high-
lighting (e. g. the name of a system that occurs the first time, or important parts
of a sentence). The Palatino serif typeface is used for the thesis text, whereas the
Arial sans-serif typeface is used for the text in the figures.

Spelling and Citations: This thesis is written in British English. The ACM Jour-
nals/Transactions citation style4 is used for all references in this thesis. References
for citations, chapters, sections, and subsections are links to the according refer-
enced page or bibliography entry in the thesis document.

Software: The developed toolkit software, source code files, and additional doc-
uments of this thesis project are included on the enclosed CD (also available for
download at the Shared Phidgets toolkit website [Marquardt, 2008]). Appendix D
provides an overview of the included documents and development projects.

4 Instructions and downloads of the ACM Journals/Transactions citation style are available at
http://www.acm.org/pubs/submissions/latex_style/index.htm

8

http://www.acm.org/pubs/submissions/latex_style/index.htm

CHAPTER 2

Background and Foundations

In this chapter the background and foundations of the thesis research project
are introduced. This includes an overview of the early visions of ubiquitous and
tangible computing. These visions describe information systems that move off the
desktop, so that our interaction with information technology can take place in our
everyday environment. The chapter also introduces the concepts behind embod-
ied interaction and context awareness, and describes the principles of information
appliances. Subsequently, various prototype systems are described that were built
by researchers as implementations of the ubiquitous and tangible computing vi-
sions. A summary highlights the characteristics of these prototypes. The review
of prototyping techniques concludes the chapter.

2.1 Ubiquitous Computing

The early visions of the embedded and ubiquitously available computing technol-
ogy were first introduced by Mark Weiser while working at Xerox PARC [Weiser,
1991]. He used the term ubiquitous computing (UbiComp) to describe a new gen-
eration of computing technology. Weiser envisioned a variety of networked com-
puting devices, accessible and embedded everywhere in our environment that can
support users with computing technology just at the right places. The computing
technology should assist users with their everyday tasks and activities, while it
should be unobtrusive and invisible at the same time.

Weiser already predicted that in the next years there will be many small and
embedded computers used per person [Weiser, 1991]. This would be the conse-
quent evolution of the usage of computing devices: from the time when users had

9

Chapter 2 Background and Foundations

to share computing power with other users (e. g., the multi-user mainframe sys-
tems), to the era of the desktop computer where the user works in front of a single
computer, and finally to an environment with many embedded computing devices
that are networked and accessible everywhere [Weiser, 1991]. Weiser describes
this as “the age of calm technology, when technology recedes into the background of
our lives” [Weiser, 1996].

Figure 2.1: The tab prototype
[Weiser, 1996].

An important characteristic of this ubiquitous
technology is the fact that it should be invisible,
as the “most profound technologies are those that
disappear. They weave themselves into the fabric of
everyday life until they are indistinguishable from
it.” [Weiser, 1991]. When Weiser describes the
interface to this computing technology as invisi-
ble, this does not necessarily mean that the com-
puters themselves are invisible. He rather envi-
sioned an intuitive interaction with the devices,
and states that the “highest ideal is to make a com-
puter so embedded, so fitting, so natural, that you
can use it without even thinking about it.” [Weiser,
1991]

Figure 2.2: The paper sized pad
prototype [Weiser,
1996].

Weiser and his colleagues at Xerox PARC have
created various research prototypes to implement
and evaluate this concept of embedded and ubiq-
uitous technology. They categorise computers in
three different form factors: the small, palm sized
tabs; the paper sized pads; and the larger, wall
mounted boards [Weiser, 1991]. Weiser predicted
for the future that there will be hundreds of these
computers spread out in a single room, each of
these devices suited for a different task.

Figure 2.1 illustrates the inch-scaled tabs that are
described by Weiser as active Post-it notes. These
devices can be utilised as calendars, diaries, read-
ing devices, dictionaries, responsive environment controls, and weather displays
[Schilit et al., 1993]. Furthermore, the researchers at Xerox PARC integrated the
same technology into the active badge [Want et al., 1992]; an electronic name tag
with infrared (IR) technology that can locate the position of people in buildings.
This allows application scenarios like the automatic opening of doors, the for-

10

Chapter 2 Background and Foundations

warding of telephone calls, or the adjustment of computer display configurations
according to the users’ preferences [Weiser, 1991]1.

Weiser describes the paper sized pads (illustrated in Figure 2.2) as “scrap comput-
ers”, whereby he has in mind that they have no individualised identity or impor-
tance [Weiser, 1991]. Users can take any of the pad computers and for example
spread them out on a table and use them like paper. They are used temporarily
for a particular task and can be later used by someone else. With this character-
istic they differ from the way people normally use notebooks or tablet computers
today. Notebook computers are personalised computers of their owners and are
carried around with them. The pads on the other hand can be grabbed and used
anywhere. When users finish their task they leave the pad for other users [Weiser,
1991]. The research prototypes built by the XEROX PARC researchers were called
the ScratchPad, XPad, and MPad; and they included a X-Window-based software
and a drawing surface [Weiser, 1993].

Figure 2.3: The Xerox PARC Liveboard
prototype [Weiser, 1996].

The boards shown in Figure 2.3 provide the
digital equivalent to blackboards or bulletin
boards [Weiser, 1991]. They are large wall
screens with the ability to write on the screen.
The boards are useful for collaborative work
of small groups (e. g., viewing documents, pre-
sentations, videos). A board could also be used
to display public information and adapt the
content depending on the people in the room
(identified with their active badges [Want et al.,
1992]).

Mark Weiser identified three requirements for
the success of the technology: cheap and low-
power computers with high quality displays, ap-
propriate software for these computers, and an all connecting network infrastruc-
ture [Weiser, 1993]. Although the first and third requirement (cheaper and low-
power hardware and an ubiquitously available network) already become more
and more reality in recent years, the second requirement—the development of
adequate software to control ubiquitous computing applications—becomes even
more important and is therefore a very active academic research area.

1 Although the tabs have similarities with the today’s widespread Personal Digital Assistants
(PDA), they differ in an important characteristic. PDA computers are highly personalised
devices for managing the user’s contacts, schedule, and emails (and are carried around with
them). In contrast, the tabs are not intended as personal devices for a specific user, rather
than being ubiquitously available tools in the environment to be used by everyone when they
are needed for a specific task.

11

Chapter 2 Background and Foundations

As Weiser points out, the advantage of Ubiquitous Computing does not emerge
from many distributed computers alone, but from the interconnection between
all of them. “Like the personal computer, ubiquitous computing will produce nothing
fundamentally new, but by making everything faster and easier to do [...] it will
transform what is apparently possible” [Weiser, 1991]. In summary, “ubiquitous
computing enhances computer use by making many computers available through-
out the physical environment, while making them effectively invisible to the user”
[Weiser, 1993]. Mark Weiser’s work identified visions for a next generation of
computing devices and frames the foundations of the work in this thesis.

2.2 Tangible User Interfaces

The work of Hiroshi Ishii and Brygg Ullmer at the Tangible Media Group of the
MIT2 was influenced by Mark Weiser’s research of ubiquitous computing; how-
ever, they introduce the so called Tangible Bits with a different understanding of
the user’s interaction with digital information. They try to “bridge the gap between
cyberspace and the physical environment by making digital information (bits) tan-
gible” [Ishii and Ullmer, 1997]. As illustrated in Figure 2.4(a), their goal is to
turn the environment into the interface, so that the boundaries between humans
and the digital world dissolve; in contrast to the interaction with the desktop
computer.

Paul Dourish summarises this concept as follows:

“The intuition behind tangible computing is that, because we have
highly developed skills for physical interaction with objects in the world
- skills of exploring, sensing, assessing, manipulating, and navigating -
we can make interaction easier by building interfaces that exploit these
skills.” [Dourish, 2001]

Therefore, the user interaction with tangible interfaces differs from traditional
computer interfaces in the following ways: the input works through the manip-
ulation of graspable, physical objects (e. g., blocks made out of wood, glass, or
metal), and the system can in turn change the physical objects as output (e. g., by
augmentation or physical manipulation) [Ishii and Ullmer, 1997]. Therewith, the
physical artefacts are input and output of the tangible user interface at the same
time.

Ishii and Ullmer [1997] further explain their concept of tangible interactions that
is illustrated in Figure 2.4(b): the foreground interaction with graspable media

2 Massachusetts Institute of Technology

12

Chapter 2 Background and Foundations

(a) From desktop computing to tangible user
interfaces.

(b) Centre and periphery of user’s
attention.

Figure 2.4: Principles of tangible user interfaces [Ishii and Ullmer, 1997].

(the coupling of bits and atoms) and interactive surfaces (e. g., wall, desktops, ceil-
ings), and the ambient media in the background. The foreground interaction
requires users to have the focus of their attention on the current task, whereas
the changes in the background are only perceived in the periphery of the user’s
attention. Buxton [1995] describes a human-centric model that builds on the
background and foreground interaction, and how systems should support seam-
less transitions between these forms of interaction. Buxton explains that these
systems can reduce the load on the user and the necessary technological knowl-
edge, if the systems make use of the context and the knowledge of the application
domain.

Instances of the foreground interaction are the metaDESK [Ullmer and Ishii, 1997],
the transBOARD, and the mediaBlocks [Ullmer and Ishii, 2000]. They have in
common that they allow the users to access and work with digital information by
manipulating graspable, physical objects. Furthermore, the ambientROOM project
illustrated in Figure 2.5(a) highlights the innovative ideas behind the ambient me-
dia concept. On the one hand, the system uses light, shadows, projections, sound,
air flow, and water movement to change the environment (cf. Figure 2.5(a) and
2.5(b)), and therewith provide event notifications at the periphery of the user’s
perception. On the other hand, the ambientROOM provides physical artefacts
that control an associated part of the digital world. These are for instance bot-
tles, clocks, and books as tangible controls for the manipulation of the digital
bits. The bottles illustrated in Figure 2.5(c) represent digital information that
can be accessed by opening the bottles, and the hands of the clock illustrated in
Figure 2.5(a) can be manipulated by the users to access past events. These com-
putationally augmented artefacts in the environment can make the interaction
with information technology more intuitive for users.

13

Chapter 2 Background and Foundations

(a) The ambientROOM overview. (b) Water lamp projections
as ambient
notification.

(c) Bottles as physical
handles to control
music and light.

Figure 2.5: The ambientROOM project of the Tangible Media Group [Ishii and Ullmer, 1997].

In short, with the tangible interaction Ishii and Ullmer introduced an influential
concept for the representation of digital information in the physical environment
and the interaction with these tangible bits. This research and the diverse exper-
imental prototypes were inspirations for this thesis research work and the devel-
opment of the Shared Phidgets toolkit.

2.3 Embodied Interaction

With embodied interaction Dourish [2001] introduces a concept that applies knowl-
edge and theories of philosophical and sociological research to the emerging vi-
sions of tangible computing. Dourish states that “embodiment is the property of our
engagement with the world that allows us to make it meaningful” [Dourish, 2001].
People are better in using systems that are meaningful to them and are strongly
connected to their social practices.

Dourish explains that “[e]mbodied interaction is the creation, manipulation, and
sharing of meaning through engaged interaction with artifacts”. This does not only
mean physical presence of these artefacts in the environment, but moreover that
the “occasion within a setting and a set of specific circumstances gives it meaning
and value” [Dourish, 2001]. Dourish further describes that “technology and prac-
tice cannot be separated from each other; they are coextensive and will coevolve.
Practices develop around technologies, and technologies are adapted and incorpo-
rated into practices.” [Dourish, 2001]. Therefore it is crucial to consider and
evaluate the ways of how technology is integrated into the everyday routines of
people. This is another argument of why prototyping of interactive applications

14

Chapter 2 Background and Foundations

is so important: it can lead to findings about the integration of the technology
into social practices of people that might be different to the expectations of the
developers and designers.

Dourish does not define a strict set of guidelines for designers and developers of
how to create systems to support embodied interaction:

“Embodied interaction is not a technology or a set of rules. It is a
perspective on the relationship between people and systems. The ques-
tion of how it should developed, explored, and instantiated remain open
research questions.” [Dourish, 2001]

Nonetheless, a summary of design principles highlights important concepts. For
instance, that “users, not designers, create and communicate meaning” and “users,
not designers, create coupling” [Dourish, 2001]; principles that stress the impor-
tance of considering that the users integrate the technology into their social prac-
tices. Another principle is that the “embodied technologies participate in the world
they represent” [Dourish, 2001], which is especially important for the tangible
user interfaces.

With the developed Shared Phidgets toolkit it is intended to support developers
to easily build and evaluate embodied technology that is integrated into the so-
cial practices of people. Developers should be able to focus on finding the right
forms of embodied interaction through the physical user interface, rather than the
technological difficulties of the development.

An important aspect of the embodied technology is the system’s awareness of the
surrounding context in a way that the system can adapt and react to changes
of the context. Therefore, the next section introduces the concept of context
awareness.

2.4 Context Awareness

Context awareness is another important concept of interactive systems, and de-
scribes their ability of being able to sense the context in the environment of the
user and the system. This context “typically includes the location, identity, activ-
ity and state of people, groups and objects” [Salber et al., 1999]. Therefore, these
systems can use this information and dynamically respond to the changes of this
context. A system that reacts and adapts to this context information can interpret
this information to execute services. This enables the system to provide informa-
tion that is useful or important to the user in the current context. The system

15

Chapter 2 Background and Foundations

could also store the context information for later data retrieval [Salber et al.,
1999].

An example of a context aware application is the automated phone call forward-
ing of the ActiveBadge system [Want et al., 1992] mentioned earlier. Based on
the identity of the caller and the current location of the receiver of the phone
call, the system can use this information to forward or reject the call. Another
example of a context-aware system is an electronic city guide device that knows
the current location of the user and can therefore provide information about the
nearby landmarks and restaurants.

In summary, context aware systems are able to react to changes in the environ-
ment in meaningful ways. To implement this context awareness, physical sensors
can be integrated, so that the system can derive context related information from
these sensor values. To support the development of context aware applications,
the Shared Phidgets toolkit should facilitate the integration of (and access to)
physical sensors and actuators.

2.5 Information Appliances

Donald Norman describes the concept of information appliances in his book The
Invisible Computer [Norman, 1999]. The key characteristic of information appli-
ances is that they are specialised for a certain task, and that they are intercon-
nected based on an underlying network infrastructure. He follows Mark Weiser’s
vision [Weiser, 1991] insofar as an “ideal system buries the technology that the
user is not even aware of its presence.” [Norman, 1999]. The specialisation of the
functionality of the device has the advantage that “learning how to use [the de-
vice] is indistinguishable from learning the task” [Norman, 1999]. Norman argues
that “difficult tasks always have to be taught. The trick is to ensure that the new
technology is not part of the difficulty” [Norman, 1999]. Information appliances,
however, lack many of the advantages of the desktop computer, because of their
specialised design. This is for example the high flexibility and possible recom-
binations of software on the desktop computer that allows the uses in initially
unintended ways.

Norman [1999] stresses the fact, like Weiser previously [Weiser, 1993], that an
important characteristic of the ubiquitously available technology is their intercon-
nection with an underlying network infrastructure. The success emerges from
the combination and fluent interaction between appliances. Nonetheless, not all
appliances necessarily have to work together. In fact, it is important to find cate-
gories of appliances that benefit from working interconnected (e. g., sharing dig-

16

Chapter 2 Background and Foundations

ital artefacts like photos and videos); whereas others work separated from each
other (e. g., appliances that access highly personal data, like bank accounts). This
exploration of novel assemblies and connections between appliances is one of the
application areas of the Shared Phidgets toolkit.

The concept of information appliances—specialised for specific tasks and inter-
connected via a network—describes key characteristics of the physical user in-
terfaces that developers can prototype with the proposed toolkit. The Shared
Phidgets toolkit helps developers to experiment with appliances, change their in-
teraction methods, focus on the device design, implement connectivity with other
appliances, and evaluate the users’ interaction with the systems. In the next sec-
tion of this chapter various example prototypes of such information appliances
are described in detail.

2.6 Applications and Prototype Systems

Based on the mentioned visions of ubiquitous and tangible computing, researchers
have developed various prototypes of systems that explore this research field.
Therefore, the following subsections give an overview of selected prototypes that
have been developed in the last years. These diverse prototypes help to identify
the requirements for the toolkit, and to comprise the feasible application areas
of prototyping toolkits. The examples fall into the following categories: Facilitat-
ing Communication, Providing Awareness with Ambient Displays, Technology in the
Domestic Space, and Tangible Digital Information and Media.

2.6.1 Facilitate Communication

An important research area is the exploration of how to support people to com-
municate over distance with their family, friends, and colleagues. Based on this
research several prototype systems have been developed that are now briefly de-
scribed.

The HomeNote system [Sellen et al., 2006] introduces a situated display in the
home to support family communication. The system supports a different approach
for communication, as people can send messages to a place, rather than to a
particular person. Messages can be sent to the HomeNote display from mobile
phones, or scribbled on the write-sensitive screen, and the messages than appear
on the display (with additional information as the phone number or an image of
the sender of the message). Sellen et al. [2006] have investigated the value of

17

Chapter 2 Background and Foundations

placing such displays at specific locations in the home (e. g., the mantelpiece, the
hallway). The results of an evaluation of the HomeNote system show the various
types of communication that are supported with a situated display. For instance,
with calls for action family members have used the system to call more than one
person to take some action. The system also supports awareness and reassurance
of actions and activities (e. g., children tell where they are), as well as sending
reminders and passing on messages. This research points out the importance of
evaluating the prototypes of the situated technology in the home, and how the
utilisation of the device can change depending on the location.

The ActiveHydra is an example of a context-aware media space that can facilitate
communication between distant collaborators [Greenberg and Kuzuoka, 2001].
The system includes a video screen and microphones to allow communication be-
tween remotely located co-workers, as well as various sensors so that the system
can derive the current context. For instance, the system is able to switch between
an awareness mode (slow video update, no audio) and a high-quality communi-
cation (video and audio) if users draw near to the ActiveHydra. Therefore, the
integrated sensors let the communication appliance react to changes in the envi-
ronment (context awareness).

With the LumiTouch prototype Chang et al. [2001] investigate how to bridge the
distance between remote located family members or relatives. Their system con-
sists of two digitally enhanced picture frames; each equipped with a set of touch
sensitive sensors and lights around the frame. With these sensors the system is
aware of people holding, touching, and moving the picture frame. These activi-
ties are shown on the second (remote located) picture frame by illuminations and
sounds. Chang et al. [2001] were especially interested in ways to provide aware-
ness of the activities of distant relatives, and how technology can support the
people to feel that they are closely connected. Therefore, the LumiTouch picture
frames provide an informal and light-weight kind of communication.

The digital family portrait [Mynatt et al., 2001] and CareNet [Consolvo et al.,
2004] are systems that provide awareness information between senior adults and
their extended family members. This awareness system can support elderly adults
to stay independently at home, and gives their caregivers (e. g., their children) in-
formation about their health and activities. With the digital family portrait, it is
possible to choose between different kinds of information to display in the border
area of the picture frame: health, activity, special events, and relationship. These
information are visualised as icons around the digital photo, where the size of
the icons represent a certain value or percentage. The CareNet system shown in
Figure 2.6(a) provides more in-depth information once a user touches the photo
(e. g., information of the following categories: activities, meals, mood, medica-
tions) [Consolvo et al., 2004]. The challenges are in capturing this information,

18

Chapter 2 Background and Foundations

in the methods to abstract the values to preserve privacy on both sides, and find-
ing out how to present this information on the displays (maybe with abstract
representations, as for instance ambient lights). Although Mynatt et al. [2001]
and Consolvo et al. [2004] did mention the value of integrating sensors to de-
rive the related information (e. g., activity, taken medication) to display on the
frames, the systems so far are not integrating any physical sensors. This integra-
tion of sensors will raise further questions of how to abstract the sensed values
and preserve privacy. The developed Shared Phidgets toolkit facilitates exactly
this integration of physical sensors into the prototypes, and therewith allows the
researchers to focus on the evaluation and modification of the prototypes.

2.6.2 Providing Awareness with Ambient Displays

Another category of prototypes are the ambient displays and systems to provide
awareness. The most important characterisation of ambient displays is the ability
to provide awareness of the occurrence of events (e. g., reminders, notifications,
presence of people) in the periphery of the user’s attention. Intentionally, ambient
displays should be embedded and integrated in the user’s everyday environment,
so that they can give useful information without being intrusive.

The Live Wire [Weiser and Brown, 1996] installation at Xerox PARC shown in
Figure 2.6(b) is one of the early prototypes of an ambient display. It gives the
network traffic of the Xerox PARC network a physical presence. To do this, the
installation is using a motor to control a dangling string hanging from the ceiling.
The rotations of the motor depend on the current measured network traffic in the
research lab. With it, the Live Wire gives people that are walking by an awareness
of the current (usually invisible) network activity of the research lab.

In the TOWER environment [Prinz and Gross, 2001], ambient displays are utilised
to provide awareness of activities in a collaborative workspace. These are for in-
stance large screens showing recent workspace changes, or a water-lamp illus-
trated in Figure 2.6(c) to indicate web page or web-cam access to the visitors
in a coffee room. Prinz and Gross [2001] conclude, that the augmentation of
groupware systems with ambient displays can “increase the awareness and co-
hesion in distributed teams”, and therefore “support[s] communication and coop-
eration between distributed teams in an adequate manner compared to co-located
teams” [Prinz and Gross, 2001].

Besides providing visual awareness information by using displays, lights, etc.,
Mynatt et al. [1998] have explored if soundscapes with background auditory
cues can provide serendipitous information in the workplace. By hearing mu-
sic, speech, and sound effects on the edge of background awareness, this audio

19

Chapter 2 Background and Foundations

feedback can give users information about their co-workers presence and physi-
cal actions in the workplace. In their developed AudioAura system Mynatt et al.
[1998] use the active badge system [Want et al., 1992] to retrieve presence infor-
mation of the users, and sensors on the software side (e. g., calendar and email).
The implementation of the system requires the in-depth exploration of sensor con-
figurations and their placement, as well as the timing between sensors and audio
signals.

(a) The CareNet
system
[Consolvo
et al., 2004].

(b) Livewire installation at
Xerox PARC [Weiser, 1996].

(c) Water lamp of the TOWER
environment [Prinz and
Gross, 2001].

Figure 2.6: Ambient displays and remote awareness systems.

The visualisation projections of the ambientROOM [Ishii and Ullmer, 1997] are
also examples of ambient displays to provide awareness information. Initially,
Ishii and Ullmer [1997] have used the sound of rain to give a user ambient feed-
back of the traffic on a website (with a volume controlled playback of the rain
sound effects). They found out, however, that these sound effects distract users
from their work (as the sound is too intrusive), and therefore they decided to
evaluate an alternative design: the water ripple projection, as illustrated in Fig-
ure 2.5(b). An actuator element connected to a water tank can cause ripples on
the water (in this case, dependant on the web traffic). A light source is shining
through the water tank and is projecting the water surface onto the ceiling of the
ambientROOM. The result is a very calm and unintrusive ambient visualisation of
the awareness information in the periphery of the user’s attention.

The location-dependant information appliances [Elliot et al., 2007] enhance the
concept of ambient displays in two aspects. First, the information appliances are
aware of their location, and therefore appliance can provide diverse awareness
information depending on the location. Second, the appliances let the users eas-
ily move between background awareness information and foreground interaction
with detailed information [Buxton, 1995]. Users can easily change the infor-
mation source that is displayed on the ambient display (e. g., weather, traffic,
messages), and associate this information to an information appliance and/or a

20

Chapter 2 Background and Foundations

particular location. This allows end users to benefit from ambient displays at the
locations that make sense to them.

2.6.3 Technology in the Domestic Space

Researchers have investigated the advantages and tradeoffs of living in homes
with embedded information technology, which is integrated to support people’s
everyday practices. Many issues arise with the usage of computing technology in
homes, mainly because of the differences between the social practices at home
compared to the office (which is the traditional application domain for informa-
tion technology) [Elliot et al., 2007]. With the following research projects, these
differences and the usefulness of applications in the domestic space have been
explored.

The Aware Home [Kidd et al., 1999] is a living laboratory for ubiquitous computing
research of the Georgia Institute of Technology. The intention of the research is to
build a house that is aware of its occupants’ activities, and supports the everyday
activities of the family members. By integrating distributed sensors, displays, and
actuators in the home, Kidd et al. [1999] explored various application scenarios.
For instance, a finding lost objects service helps users to find lost wallets or keys in
the home. They also implemented and evaluated identification techniques (e. g.,
the Smart Floor), digital augmentation of objects, monitoring and security appli-
cations, and care facilities (e. g., the previously mentioned digital family portraits
[Mynatt et al., 2001]).

The Gator Tech Smart House [Helal et al., 2005] also evaluated the support of
embedded computing technology in the home. The applications range from a
smart mailbox (senses mail arrival and notifies occupants), smart blinds and ther-
mostats (can automatically adjust to personal light and temperature preferences),
to home security monitors (monitors windows, doors). In general, they explored
and evaluated the utilisation of sensors and actuators in the domestic space, with
considering technological and sociological constraints.

The Gate Reminder [Kim et al., 2004] is another example of how context aware
information appliances can be integrated into households to support the every-
day routines of the family. The system is designed to remind the family members
of forgotten objects (e. g., key, wallet, mobile phone), things to do (e. g., shop-
ping list, books due in the library), or to display other messages and information
(e. g., the weather report with recommendations to take the umbrella when it is
raining).

21

Chapter 2 Background and Foundations

(a) Deployment of the displays in the home. (b) Scenarios of the Gate Reminder
system.

Figure 2.7: The Gate Reminder system: situated reminder displays in the home [Kim et al., 2004].

The system includes embedded displays (e. g., at the front door of the home as
seen in Figure 2.7(a) on the left side) that can display reminders for the family
members when they enter or leave the house. The displays receive messages from
the household members (e. g., via a cell phone; Figure 2.7(a) on the right side),
and they use RFID tags as well as video cameras and microphones to recognise the
person that is leaving or entering the building. They also use various motion and
door sensors to get detailed information about the activity at the house entrance,
and RFID tags for the detection of objects [Kim et al., 2004]. With these sensors
the Gate Reminder system can derive context information, so that it can provide
the useful reminders at the right time (e. g., when leaving) and place (e. g., at the
front door).

Figure 2.7(b) illustrates a series of scenarios of the Gate Reminder system. Users
can register objects (e. g., books) in the system to get reminded of taking these
objects with them when they leave at a particular date. They can also send mes-
sages and reminders with their mobile phone. In another scenario, a user sees the
weather report on one of the situated displays and takes the umbrella with her
when leaving [Kim et al., 2004]. When implementing the Gate Reminder system
to evaluate these scenarios, Kim et al. [2004] were facing several difficulties: de-
termine the intentions of a person (e. g., leaving, entering, directions), placement
of the sensors and displays, and the optimal timing of the reminders. In this case
the utilisation of a rapid prototyping toolkit would be helpful, as it can support the
evaluation of different implementations, and facilitate the testing of design alter-
natives. The developed Shared Phidgets toolkit facilitates the development with
distributed sensors and displays as they are used in the Gate Reminder system.

22

Chapter 2 Background and Foundations

Elliot et al. [2007] summarise the importance of using contextual locations inside
homes, and how these locations can support and enhance the information man-
agement of the family members. For instance, messages (e. g., sticky notes) of the
family members are placed at particular locations within the home (e. g., on the
fridge in the kitchen, at the front door, on the television screen) to act as memory
triggers, provide awareness, or help to coordinate resources [Elliot et al., 2007]. In
many cases, the location of these messages provides important context informa-
tion in itself. For instance, when messages are located at the inside of the front
door, they might require a particular action when leaving the house. The imple-
mented StickySpots system [Elliot et al., 2007] supports this type of location-based
messaging by placing displays at various meaningful locations inside the home,
and allowing the family members to send handwritten notes to a particular dis-
play. With this prototype it is possible to evaluate the integration of the system
into the routines and practices of the families.

2.6.4 Tangible Digital Information and Media

This category covers two example prototypes that make digital information physi-
cal and graspable. These systems directly address Ishii’s vision of the Tangible Bits
[Ishii and Ullmer, 1997].

Figure 2.8: The marble answering machine by Durrell Bishop.

One example of a tangible user interface is the marble answering machine by Dur-
rell Bishop [Crampton Smith, 1995]. Unlike conventional phone answering ma-
chines, this one does not overwhelm users with any buttons or displays. Instead,
the user interacts physically with the device: for every new message that a caller
leaves on the machine, the system drops a marble into a small container on the
front, as illustrated in Figure 2.8 3. When the user returns and wants to hear one
of the recorded messages, he/she can simply grab one of the marbles and put

3 Source of the illustration: http://www.interakt.nu/home/images/MarbleAMschematic.jpg
(Last access: October 15th, 2007)

23

Chapter 2 Background and Foundations

it into an indentation of the machine to playback the recorded message. If the
marble is placed near an augmented phone, the number of the caller is dialled
automatically. Thus, the marble answering machine is an excellent example of
how to give digital information a physical presence, and how to interact with this
tangible interface.

Figure 2.9: Tangible digital information with mediaBlocks [Ullmer and Ishii, 2000].

The mediaBlocks system [Ullmer and Ishii, 2000] is another example of how to
connect digital information with a physical representation. The mediaBlocks are
small wooden digitally tagged blocks (shown in the left side of Figure 2.9) asso-
ciated with digital media; for instance videos, photos, or presentations. Users can
interact with these physical tokens (phicons) in the following ways. First, they can
use the mediaBlocks to easily transfer media between devices. Second, by arrang-
ing the blocks in a sequence rack as illustrated in the right side of Figure 2.9 users
can modify and control the digital content (e. g., sequences of video clips). The
mediaBlocks therefore explore possible techniques to work with digital media in
the physical world.

2.6.5 Summary of Prototype Characteristics

In summary, these introduced prototype systems are example implementations
of ubiquitous computing systems with physical or tangible user interfaces that
move off the desktop and into the user’s everyday environment. A few of these
systems are built as local information appliances, but most of them are integrating
various remotely located displays, sensors, and actuators. The number of utilised
hardware components ranges from single sensors or actuators (for instance in
the Live Wire or Digital Family Portrait projects) to systems that integrate larger
collections of hardware devices (for instance the Gate Reminder or ambientROOM
projects).

24

Chapter 2 Background and Foundations

The researchers that have built these systems had to deal with low level imple-
mentation issues that occur when building these distributed prototypes. This
makes the systems difficult to build, and even more important: it can hinder the
exploration of alternative designs and prototype variations. Therefore the main
objective of this thesis is to provide developers a toolkit that allows the rapid
prototyping of similar distributed physical user interfaces like these of the four
categories outlined in this section of the chapter. Before the requirements of the
toolkit are introduced in Chapter 3, the prototyping strategies for the develop-
ment of interactive appliances are described in the next section.

2.7 Prototyping Techniques

When designing interactive systems as those described in the previous section of
the chapter, developers and designers can choose between diverse prototyping
techniques. Two general categories of these techniques are the low-fidelity (e. g.,
paper-based) and the high-fidelity prototypes (e. g., software development, GUI
builders) [Preece et al., 2002; Rudd et al., 1996].

Low-fidelity prototypes “tend to be simple, cheap, and quick to produce” [Preece
et al., 2002], and therefore they are the ideal means to explore alternative designs
at the early development stages of a project. Various techniques are available to
create low-fidelity prototypes. First, with sketches and drawings the developers
can illustrate important aspects of the system [Buxton, 2007; Preece et al., 2002].
Second, Storyboards are a series of drawings that illustrate use cases or scenarios
of the system (e. g., how a user interacts with the envisioned physical appliance)
[Preece et al., 2002]. Therefore, with storyboards it is possible to capture the
dynamics of the interaction process. Third, Wizard of Oz prototyping describes a
technique where the developer is simulating the response of the system. When
users are interacting with the prototype they get the illusion of a working system,
although the system is not yet implemented [Li et al., 2007; Preece et al., 2002].
Finally, with videos and animations it is possible to illustrate the interaction and
usage of a system; however, this technique is the most time consuming of the four
low-fidelity prototyping strategies [Buxton, 2007].

High-level prototypes on the other hand are already working implementations of
the systems. To practically implement a high-fidelity prototype, it’s functionality
has to be reduced compared to the full working system. The two strategies to
achieve this are horizontal and vertical prototypes. On the one hand, the horizon-
tal prototypes implement the features of the full system but limit the implementa-
tion details of these features. On the other hand, a vertical prototype offers only

25

Chapter 2 Background and Foundations

a limited set of the features; however, these features are then implemented in a
higher level of detail than with the horizontal prototype [Nielsen, 1993].

High-fidelity prototypes are useful for the testing of the user’s interactions with the
system [Rudd et al., 1996]. They help to identify problems with the current proto-
type design and support the developer with decisions between implementation al-
ternatives. This is becoming even more important when the development does not
only include software (e. g., websites, user software), but hardware components
as well (e. g., information appliances). As Liu and Khooshabeh [2003] pointed
out, there can be design weaknesses of ubiquitous computing systems that were
only revealed by the evaluation of interactive high-fidelity prototypes. Therefore,
the high-fidelity prototypes are a good complement to the design sketches and
storyboards of the early design phase.

The advantages and disadvantages of high- and low-fidelity prototyping are sum-
marised in Table 2.1 [Rudd et al., 1996]. The most significant disadvantage of the
high-fidelity solution is the time-consuming and expensive development. Another
drawback of the high-fidelity prototyping is the tendency of users to assume that
the prototype is already the final system. Developers are maybe considering fewer
alternatives because they have already developed a working prototype that users
like [Preece et al., 2002]. Therefore, a prototyping development system should
facilitate the exploration of design alternatives for developers during the design
process and allow the easy and flexible exchange of all used hardware interface
elements and components [Abowd, 1999]. The Shared Phidgets toolkit minimises
the drawbacks of the development of high-level prototypes (lower right section of
Table 2.1). The toolkit makes the prototype programming as easy as possible, to
minimise the necessary time developers have to spend on the programming of the
prototype, and to encourage the exploration of design alternatives.

In summary, the following issues have to be considered when developing a high-
fidelity programming prototyping toolkit to minimise the limitations of the high-
fidelity prototype development:

◦ Minimise the effort required to build high-level prototypes [Rudd et al.,
1996].

◦ Support the exploration of implementation alternatives [Preece et al., 2002;
Abowd, 1999].

◦ Allow the flexible substitution of all the used hardware interface compo-
nents [Abowd, 1999].

Rapid prototyping is an inherent part of the development and design process of
interactive systems. Both—low- and high-fidelity prototyping—have certain ad-
vantages and are particularly suitable at different stages of the design process.

26

Chapter 2 Background and Foundations

Type Advantages Disadvantages
Low-
Fidelity
Prototype

◦ Lower development cost.
◦ Evaluate multiple design

concepts.
◦ Useful communication device.
◦ Address screen layout issues.
◦ Useful for identifying market

requirements.
◦ Proof-of-concept.

◦ Limited error checking.
◦ Poor detailed specification to

code to.
◦ Facilitator-driven.
◦ Limited utility after

requirements established.
◦ Limited usefulness for

usability tests.
◦ Navigational and flow

limitations.

High-
Fidelity
Prototype

◦ Complete functionality.
◦ Fully interactive.
◦ User-driven.
◦ Clearly defines navigational

scheme.
◦ Use for exploration and test.
◦ Look and feel of final product.
◦ Serves as a living

specification.
◦ Marketing and sales tool.

◦ More expensive to develop.
◦ Time-consuming to create.
◦ Inefficient for

proof-of-concept designs.
◦ Not effective for requirements

gathering.

Table 2.1: Relative effectiveness of low- vs. high-fidelity prototypes [Rudd et al., 1996].

The studies and discussions identified the high value of low-fidelity prototyping
for the early design stages, as well as the high-fidelity prototypes for building
systems for evaluations with users [Rudd et al., 1996; Preece et al., 2002]. The
drawbacks of high-fidelity prototyping strategies are considered in the design of
the Shared Phidgets toolkit.

2.8 Chapter Summary

This chapter introduced the background and foundations of the thesis research.
The research foundations were introduced with Weiser’s vision of ubiquitous com-
puting as the calm technology in the everyday environment, as well as Ishii’s work
on coupling the digital with the physical world. Embodied interaction stresses
the importance to build appliances that fit to the social practices of people, and
context awareness introduced the concept of systems that react dynamically to
changes in the environment. Information appliances summarise the concept of
situated physical user interfaces that are built to support a specific task. The

27

Chapter 2 Background and Foundations

summary of previous research prototypes has highlighted the complexity of the
development, and the common characteristics of these systems. Finally, the com-
parison of low- and high-fidelity prototyping techniques highlighted important
aspects to consider when designing the toolkit.

The next chapter focuses on the introduction of the requirements for a toolkit
that facilitates the rapid prototyping of distributed physical user interfaces. This
also includes the review and discussion of related work on the development of
prototyping toolkits.

28

CHAPTER 3

Requirements and Toolkit Research

In the previous chapter, after outlining the research area of ubiquitous and tangi-
ble computing, the need for a toolkit that supports the distributed development of
information appliances was motivated. In this chapter, the requirements for such
a development toolkit are analysed. Thereafter, existing toolkits for the rapid
prototyping of physical and tangible user interfaces are reviewed.

3.1 Important Toolkit Strategies

To achieve a better understanding of necessary requirements for the Shared Phid-
gets toolkit, this section takes a closer look to the successful strategies for toolkit
development. Toolkits for graphical user interfaces (GUI) have a long history, and
have been proven successful of facilitating the development of the applications
GUI [Myers et al., 2000; Myers, 1986; Salber et al., 1999]. These toolkits have
dramatically simplified the tasks required to build the application GUI by intro-
ducing libraries of widgets. Widgets are reusable, encapsulated building blocks
that implement a single graphical interface element for user interaction (e. g.,
buttons, pull-down menus, and checkboxes).

These toolkits have been successful because they significantly reduce the neces-
sary time developers have to spent when building new graphical user interfaces.
They facilitate the building of rapid prototypes and allow the iteration of the de-
sign process to improve the quality of these prototypes [Nielsen, 1993; Myers
et al., 2000]. Salber et al. [1999] have summarised the main advantages of these
toolkits and the provided widgets:

29

Chapter 3 Requirements and Toolkit Research

1. The widgets hide the details of the access to the hardware input devices, and
can provide abstract events to the applications. For instance, there is no
difference for an application if users choose the mouse to click a menu item,
or if they use keyboard shortcuts.

2. They encapsulate the details of the interaction, as they are handling the wid-
get specific details themselves, and applications only have to register for
events to receive notifications.

3. They provide reusable building blocks. These building blocks can be utilised
and combined, to fit the needs of the developed application.

Component systems like JavaBeans [Sun Microsystems, Inc., 2007] or .NET [Mi-
crosoft Corporation, 2007d] provide libraries of ready-to-use programming ob-
jects to the developer. For instance, this could be a library of GUI widgets that
can be integrated into graphical UI design software. This tool (for instance the
interface builder of Visual Studio [Microsoft Corporation, 2007d]) allows “people
who are not professional programmers to create sophisticated and useful interactive
applications” [Myers et al., 2000].

In their evaluation of software development tools and toolkits, Myers et al. [2000]
have identified further key characteristics of toolkits that are important for the
success of the tools. They stress the importance of two characteristics for the
toolkits: threshold and ceiling. The threshold is an indicator of how difficult it is for
beginners learning to use the system or tool. The ceiling describes the maximum
level of complexity that can be implemented with the system—or simply: “how
much can be done using the system” [Myers et al., 2000]. They emphasise the
importance of a low threshold for toolkits:

“The lessons of past tools indicate that in practice high-threshold sys-
tems have not been adopted because their intended audience never makes
it past the initial threshold to productivity, so tools must provide an easy
entry and smooth path to increased power.” [Myers et al., 2000]

Toolkits should provide means to gradually increment the available functionality
of the tools for the developer, and therefore adapt to the increasing requirements
of expert developers. Myers et al. [2000] explain that “it remains an important
challenge to find ways to achieve the highly desirable outcome of systems with both
a low threshold and a high ceiling at the same time”. Therefore, it is an important
design objective of the Shared Phidgets toolkit to minimise the entry barriers for
average programmers, but at the same time ensure the efficient and powerful
programming for expert developers.

The functionality of the toolkit and the outcome of toolkit functions should be pre-
dictable and transparent, which is difficult when the toolkit tries to take too much

30

Chapter 3 Requirements and Toolkit Research

control about the application development away from the programmer. Myers
et al. [2000] summarise that “tools which use automatic techniques that are some-
times unpredictable have been poorly received by programmers”. For the toolkit
design, it is also important to consider the path of least resistance: because tools
that are used by developers influence the kind of systems or user interfaces built,
the toolkit should try to prevent developers from choosing the wrong implemen-
tation decisions. Moreover, for the implementation of a toolkit it is important to
encapsulate the most successful development strategies as reusable software com-
ponents (e. g., the mentioned interface widgets, event-based architectures).

Event-based architectures of toolkits are a very successful concept and are widely
used [Myers et al., 2000]. These systems raise events for the actions that occur
in the system (e. g., a user typing on a keyboard or using a mouse). Event-based
architectures allow the loosely coupling of the software components. Therefore,
the event-based architecture is also a key basis of the Shared Phidgets toolkit.
The toolkit implements a transparent event architecture to allow the notification
of observers if specific events are raised (e. g., sensor changes).

In summary, the previous research of toolkits for the GUI development influences
the requirements and design decisions for the Shared Phidgets toolkit. With the
consideration of the successful toolkit design strategies it is possible to optimise
the architecture of the proposed Shared Phidgets toolkit to fit the needs of average
and expert developers.

3.2 Developer-Centred Toolkit Design

For the specification of the toolkit requirements it is important to analyse the en-
visioned toolkit characteristics in further detail. Roseman [1993] applied rules of
the user-centred design [Norman and Draper, 1986] to the development process
of the GroupKit toolkit [Roseman, 1993]. This set of rules is analogous to the
traditional process of user-centred design, with the difference that the users are
substituted with the developers that use the toolkit. This thesis follows this strat-
egy to encompass the important requirements for the Shared Phidgets toolkit.

Specify Toolkit Domain:

As mentioned previously, the toolkit domain is the rapid prototyping of distributed
physical user interfaces. The systems that are built with the toolkit therefore in-
clude various sensors and actuators, distributed across rooms and buildings. The
toolkit aims to facilitate the composition of these physical hardware components
to new information appliances.

31

Chapter 3 Requirements and Toolkit Research

Identify Developers:

The toolkit will be mainly used by developers of academic and industrial research
labs. Presumably these developers are familiar with the fundamental object-
oriented programming (OOP) concepts, and the development of GUI applications.
However, it is not expected that they are familiar with the development of tangi-
ble or physical interfaces, or distributed networking applications. Therefore, the
toolkit addresses the needs of average developers (low threshold) as well as expert
developers (high ceiling) [Myers et al., 2000].

Figure 3.1: UML use case diagram.

Identify Use of Toolkit:

The UML diagram in Figure 3.1 illustrates the important use cases that the toolkit
should support. Average developers with basic programming skills as well as expert
developers will build, test, debug, deploy, and configure information appliances.
Furthermore, the average developers need support to learn the distributed pro-
gramming of physical hardware, to explore the toolkit’s capabilities, and to use
templates and automation features (low threshold, box on the upper left corner
of Figure 3.1). On the other hand, expert developers need advanced programming
support for efficient and powerful programming: integration of custom hardware,
building abstract high-level appliances, and using simulations (high ceiling, box
on the lower right corner of Figure 3.1). Although the developers are the main
target group of the toolkit, users will implicitly use the toolkit through the built
appliances. They might need to reconfigure the settings of the appliances, as
illustrated in the upper right corner of the use case diagram in Figure 3.1.

32

Chapter 3 Requirements and Toolkit Research

Consider Target Applications:

A few categories of target applications have been described in Section 2.6. For in-
stance, these are information appliances to support communication, handling of
digital media, support the remote awareness, provide smart reminders, and con-
trol the smart home. The toolkit aims to support development of applications in
these areas, but other target areas are imaginable as well. In general, the system
should support the development of interactive user interface prototypes that inte-
grate multiple sensor and actuator hardware elements (that might be local and/or
remotely located). In contrast, it is important to note that the toolkit is not specif-
ically intended for the development of mobile ubiquitous devices (e. g., sensor
equipped mobile phones), large-scale sensor networks (e. g., large-scale tempera-
ture measuring networks), or hardware input controllers (e. g., game controllers,
3D controllers).

Design for Proper Use:

Roseman [1993] points out that a "toolkit provides more than an alphabetic list
of routines in a library to the developer". Therefore, the toolkit should encourage
developers to implement systems in a proven efficient and structured way. The
toolkit documentation, example programs, development templates, seamless in-
tegration into the IDE, and programming tutorials that are provided by the Shared
Phidgets toolkitare helping developers to benefit from the toolkit’s functionality.

Apply Design Affordances:

This is a transferred interpretation of Donald Norman’s term affordances1 [Nor-
man, 1988]. Roseman [1993] herewith describes that the developed toolkit should
self-reveal its functionality to the developer. The toolkit’s API should be designed
in a way that it suggests possible uses, and therefore shows affordances to the de-
veloper. Especially the very close integration into the developer’s IDE provides
affordances of how to utilise the toolkit. Diverse available programming strate-
gies ensure that developers can choose between multiple options to implement
their solutions.

Iterate Design:

Similar to the iterative design cycle that the toolkit explicitly supports when de-
velopers build appliances [Greenberg, 2007], the toolkit itself also undergoes the
same iterative process during its development. It is crucial to iterate the design of

1 Affordance is defined as the properties that suggest particular uses to users. An example for
affordance in Graphical User Interfaces is a button that suggests (with the visual appearance
of a 3D button) the user to push this button to trigger an action. [Norman, 1988]

33

Chapter 3 Requirements and Toolkit Research

the toolkit, and to improve it based on experiences with previous versions. The
evaluation of the toolkit, the experience with the appliance implementations, and
the feedback from other developers using the toolkit were helpful sources for the
iterative design cycle to improve the toolkit’s architecture and provided function-
ality.

3.3 Requirements of the Toolkit

Based on the toolkit’s fundamentals presented in this chapter, the developer-
centred toolkit design, the previous work of researchers developing interactive
prototypes (cf. Section 2.6), and our research group’s own experiences of proto-
typing distributed physical user interfaces, the following list summarises the re-
quirements for the architecture of the Shared Phidgets toolkit, the developer li-
brary, and the utilities to support the distributed development:

Runtime Platform and Infrastructure Requirements:

1. Distributed Hardware Access:
Provide a flexible runtime platform that allows the remote access to local
and distributed hardware components over the network.

2. Hidden Implementation Details:
Hide the details of the hardware access and network layer implementation,
as well as the synchronisation of network events.

3. Flexibility:
Allow the attachment and detachment of hardware components at any time
(plug-and-play).

4. Extensibility:
Facilitate the integration of custom hardware sensors and actuators with an
extensible framework.

Developer Library and Prototyping Requirements:

1. Event-Based Architecture:
Use an event-based notification architecture that allows the registration for
any event that occurs at one of the distributed hardware devices.

2. Encapsulation and Reusability:
Provide a library of hardware proxy objects with an easy to use API. These
hardware proxy objects should reflect the current hardware status, and in-
clude event definitions for the hardware’s specific events.

34

Chapter 3 Requirements and Toolkit Research

3. Self Revealing Toolkit Functionality:
Provide means to facilitate the exploration of the toolkit’s capabilities.

4. Diverse Programming Strategies:
Support developers that have no previous experience with the programming
of physical user interfaces (low threshold). Furthermore, consider and inte-
grate advanced programming strategies for expert developers (high ceiling).

5. Reconfiguration:
Support the easy reconfiguration of the developed information appliances
(e. g., changing the hardware components that an appliance is connecting
to at runtime).

Development Utilities Requirements:

1. Monitoring and Debugging:
Provide monitoring and debugging utilities for the distributed hardware of
the infrastructure. These utilities should provide detailed information at
different abstraction levels of the toolkit, and therefore support different
stages of the development.

2. Infrastructure Exploration:
Integrate utilities that allow insights into the internal status of developed
and deployed information appliances. This includes their current configu-
ration, the addressed hardware, the occurred events, and their distribution
across remote locations.

3. Simulations:
Allow the simulation of hardware devices to facilitate the testing and de-
bugging of information appliances.

Before the subsequent chapters explain the concept and implementation details
of the Shared Phidgets toolkit to fulfil these requirements, the next section re-
views the related work of existing development toolkits for prototyping informa-
tion appliances. These toolkits are analysed with a focus on their support for the
development of distributed physical user interfaces.

3.4 Toolkits for Prototyping Interactive Systems

This section reviews the previous research projects in the area of prototyping
toolkits for building physical user interfaces. The important aspects of the systems
are described as well as their support for the prototyping of distributed physical

35

Chapter 3 Requirements and Toolkit Research

user interfaces. The summary at the end of the section provides an overview of
the available functionality of these toolkits.

3.4.1 Phidgets

When developing a networked media-space for collaboration between co-workers
(the Active Hydra project introduced in Subsection 2.6.1), Greenberg and Kuzuoka
[2001] were facing the difficulties of integrating hardware sensors and actuators
into their system. The hardware of the prototype was very difficult to build, and
it was even more complicated to modify the hardware configuration once the first
prototype was built.

The experience with the development of this physical prototype motivated Green-
berg and Fitchett [2001] to build a toolkit which facilitates the development of
applications that integrate sensor and actuator hardware. The Phidgets toolkit
[Greenberg and Fitchett, 2001; Phidgets Inc., 2008] provides physical building
blocks for developers to prototype these systems. Phidgets include a collection of
physical sensors (e. g., movement, light, force, temperature) and actuators (e. g.,
motors, displays). These hardware components can be connected to the USB
port of any computer, and are immediately available as input or output devices.
Programmers can address the hardware components on their local computer by
using a simple application programming interface (API) that is included with the
toolkit. Proxy objects that are added to the source code of the application rep-
resent the hardware objects. The developers can easily register for events (e. g.,
sensor changes) or control properties of the hardware component (e. g., servo
movement) [Greenberg and Fitchett, 2001].

The easy integration of the physical building blocks enabled even programmers
with moderate programming skills to experiment with physical interfaces. A few
examples of the creative prototypes developed by students of an undergraduate
HCI course can be seen in Figure 3.2. These examples include tangible picture
frames (a), interactive illuminations (b), meeting reminders (c), ambient lights (d),
tangible music player (e), and a digitally augmented storybook (f). The easy to use
toolkit allowed the students to concentrate on the physical design of the infor-
mation appliance, as well as the testing of various implementation strategies to
implement their envisioned ideas [Greenberg, 2007].

This thesis project is closely related to the previous research of the Phidgets toolkit
at the University of Calgary. The developed Shared Phidgets toolkit extends the
successful Phidgets architecture in such a way that developers can prototype sys-
tems with distributed hardware like they have previously implemented them with
the local Phidgets toolkit. As described earlier in Chapter 1, the important dif-

36

Chapter 3 Requirements and Toolkit Research

Figure 3.2: Prototyping examples of the Phidgets toolkit [Greenberg, 2005, 2007].

ference is the support of distributed hardware, and the support of the challenges
that arise with the distributed development. The further advanced development
strategies and programming utilities to support this distributed development are
explained in the subsequent chapters.

3.4.2 Context Toolkit

The Context Toolkit [Dey, 2000] introduced high-level abstraction layers on top of
the raw hardware access layer. As identified by Salber et al. [1999] in their paper
about the Context Toolkit, the difficulties of building context aware application
are as follows [Salber et al., 1999]:

◦ Applications need access to sensors like GPS devices, or the Active Badge
system.

◦ The raw sensor information must be abstracted to provide high-level context
information.

◦ Systems may be distributed, so that the sensors and the computer systems
are at distant locations of a network.

◦ The systems are dynamic, and therefore the application must adapt to these
changes.

The Context Toolkit addresses these difficulties with the introduction of the Con-
text Widgets. These widgets hide the access to the underlying hardware. They
provide abstract events to the application, and they build a library of reusable
and customisable building blocks [Salber et al., 1999]. The Context Widgets are
also instantiated in a distributed architecture, and are running permanently to
monitor the environment at any time. Salber et al. [1999] have built a collection
of widgets, for instance the IdentityPresence widget that informs the application
of the arrival or leaving of people. The Activity widget can observe a location and
sends events to the application if the activity level at this location changes.

37

Chapter 3 Requirements and Toolkit Research

With this architecture of Context Widgets, Salber et al. [1999] have built context
aware applications to demonstrate the applicability of the toolkit. For instance,
the In/Out Board informs a group of people in the office of the presence of their
colleagues. Therefore, this application can be seen as a visualisation of the Iden-
tityPresence widget. The underlying technology of detecting the presence can
easily be exchanged as long as the IdentityPresence widget preserves its API.

The architecture of the Context Toolkit significantly influences the development
of the Shared Phidgets toolkit. The encapsulated widgets for the hardware ac-
cess are an important concept for hiding the implementation details. At the same
time, the aggregation and interpretation of raw sensor values is important to pro-
vide abstract high-level events. The programming objects of the Shared Phidgets
toolkit hide the low-level hardware access in a similar way. They also facilitate
the building of appliances that provide similar functionality as Context Widgets
by supporting high-level events. Nonetheless, the Context Toolkit builds upon a
collection of high-level widgets and allows their composition and assembly. The
Shared Phidgets toolkit, however, is in between the high-level Context Toolkit
and toolkits for building local sensor-based applications. It explicitly supports
programming concepts to facilitate the assembly of distributed sensors and actu-
ators. Therefore the Shared Phidgets toolkit includes the access to the events and
properties of all sensors and actuators, and it provides a library of programming
building blocks to build appliances that can implement similar functionality as the
Context Widgets.

3.4.3 Peripheral Displays Toolkit

Matthews et al. [2004] introduced with the Peripheral Displays Toolkit (PTK) a
system that supports the development of peripheral and ambient displays. The
toolkit is based on the Context Toolkit, and it provides abstraction layers and pro-
gramming support to build these ambient notification systems based on physical
sensors and actuators (similar to the systems introduced in Subsection 2.6.2). It
facilitates the development by abstracting raw sensor values to high-level interpre-
tations (the notification levels), and using transitions events to change actuators.

The abstractions describe the interpretation of raw sensor values to abstract rep-
resentations (e. g., recognizing phone rings in an audio stream). Notifications are
the events that are generated based on the changes in the abstracted interpreta-
tions of the sensor values. They address different awareness and attention levels
(e. g., ambient, alerting), and they are based on the changes in the abstracted
events (e. g., exact matches, delta changes). Finally, the transitions describe the
mapping of these notifications to the changes of actuators (e. g., motors, lights).

38

Chapter 3 Requirements and Toolkit Research

The transitions generate a series of events for the actuator that lead to fluent tran-
sitions between the previous and the current status of the actuator element.

Although the introduced abstractions facilitate the development of peripheral dis-
plays, they are only partial applicable in a generic toolkit for physical user in-
terfaces. The abstractions concept is, however, important for the Shared Phid-
gets prototyping toolkit as it represents the interpretation of raw sensor values to
high-level events. The notification levels and transitions, however, are a specific
concept related to the development of peripheral displays, as they define the at-
tention and awareness levels that map the occurred events to the notifications on
displays. Therefore, the PTK introduces a higher abstraction level with the pro-
gramming objects it provides that limits the scope of the developed applications.
Furthermore, the PTK “does not have any support for managing or learning about
the status and connections between various inputs, outputs, and other components”
[Matthews, 2005]. The Shared Phidgets toolkit explicitly supports these tasks
with a collection of advanced development utilities.

3.4.4 Papier-Mâché

Klemmer et al. [2004] have built a toolkit that facilitates the development of
tangible user interfaces. The Papier-Mâché toolkit does not only allow to use
physical objects with associated electronic tags (e. g., RFID) for creating tangible
interfaces, but uses computer vision so that developers can integrate any physical
object (e. g., scissors, pencils) into the system. The toolkit hides the complexity of
the object identification (e. g., RFID reader hardware, computer vision) from the
developer. It provides high-level events of the detected physical objects that de-
velopers can integrate into their custom applications. The Papier-Mâché radically
simplifies the development of tangible user interfaces; however, the integration
of physical interface hardware is limited to the detection of objects via RFID and
computer vision. Here, the Shared Phidgets toolkit is intended to support a wider
range of input and output devices (e. g., accelerometer, servo motors, and dis-
plays). Furthermore, the Papier-Mâché toolkit is limited to local applications,
whereas the Shared Phidgets toolkit explicitly supports the distributed develop-
ment.

Papier-Mâché includes utilities to support the TUI application development. To
facilitate the debugging and testing of these applications, the toolkit offers moni-
toring windows for current input objects, overview of the computer vision recog-
nition, and Wizard of Oz (WOz) simulation functionality. Therewith, developers
can easily simulate hardware that is not available, or reproduce scenarios for
testing the developed applications. Although Klemmer et al. [2004] apply these

39

Chapter 3 Requirements and Toolkit Research

Figure 3.3: Papier-Mâché overview of available physical objects and computer vision recognition
[Klemmer et al., 2004].

utilities to the development of local tangible user interfaces, the objective of the
Shared Phidgets toolkit is the introduction of similar monitoring and simulation
utilities for the development of distributed physical user interfaces.

3.4.5 Calder and BOXES

The Calder toolkit [Lee et al., 2004] allows designers to combine simple physi-
cal user interface components (e. g., buttons, RFID tags) with prototyping tools
like Macromedia Director. Therewith, application designers can focus on the cre-
ation of the physical device and easily try different combinations of interactive
hardware into these mock-ups. An important feature of the Calder toolkit are the
miniaturised hardware building blocks (with wired and wireless connections) that
make it easier to integrate the hardware into small physical objects. Although this
simplifies the development of novel interface controllers, the toolkit architecture
does not support the development of distributed appliances.

An extension to the Calder toolkit is BOXES (Building Objects for eXploring Ex-
ecutable Sketches) [Hudson and Mankoff, 2006]. It simplifies the prototyping
process by allowing the coupling of physical interface elements to the software
controls of GUI applications, similar to the WidgetTap Phidgets project [Green-
berg and Boyle, 2002]. Calder and BOXES allow designers to prototype their
systems with a very short design/implement/test cycle. The toolkit therefore en-
courages testing and evaluating alternative designs in the early design stages of
the project, as changes of the prototype take only “seconds rather than minutes or
hours” [Hudson and Mankoff, 2006]. This is also a very important objective of the
Shared Phidgets toolkit, in that it provides developers (instead of interaction de-
signers) a similar easy to use prototyping tool that allows the rapid exploration of

40

Chapter 3 Requirements and Toolkit Research

implementation ideas, and minimises the efforts of using high-level prototyping
toolkits.

3.4.6 Equator Component Toolkit

The Equator Component Toolkit (ECT) [Greenhalgh et al., 2004] addresses the
developers of ubiquitous computing environments. The toolkit integrates dis-
tributed hardware into an event-based data space and provides a component
programming model for the development. These reusable programming com-
ponents (e. g., JavaBeans [Sun Microsystems, Inc., 2007]) simplify the access to
the hardware components and can be used by programmers in a similar way as
the Phidgets hardware proxy objects [Greenberg and Fitchett, 2001]. The net-
work architecture of the system is based on a distributed tuple-space with a sub-
scriber and notification mechanism, similar to the iRoom’s EventHeap [Johanson
and Fox, 2002]. The toolkit includes utilities to observe the network events and
components capabilities (left side of Figure 3.4), but does not provide means for
controlling or simulating hardware. The system, however, provides an editor tool
that allows the assembly of components to appliances as illustrated in the right
side of Figure 3.4 [Egglestone et al., 2006,?]. This tool provides a limited control
over the hardware and the event flow between these components, and is therefore
primarily a tool for end users rather than developers.

Figure 3.4: ECT capability browser and graph editor [Egglestone et al., 2006].

3.4.7 Voodoo IO Toolkit

The research of Villar and Gellersen [2007] with the Voodoo IO toolkit emphasises
the importance of the spatial arrangement and location of physical user interface
controls. Their introduced hardware technology allows the free arrangement of

41

Chapter 3 Requirements and Toolkit Research

buttons, lights, and sliders on a substrate material. Therefore, developers and
end users can easily combine groups of controls to build meaningful and cus-
tomised controls as illustrated in Figure 3.5. The substrate material is a flexible
pad that can have any physical two-dimensional shape, and all physical controls
have contact pins that connect them with the communication network once they
are pinned onto the substrate. The electronic controls are using a one-wire com-
munication protocol, and a programming interface enables the access to the con-
nected hardware components [Villar and Gellersen, 2007].

Figure 3.5: Using Voodoo IO to transform everyday surfaces into control areas [Villar and
Gellersen, 2007].

They illustrate the applicability of their toolkit with various examples of cus-
tomised user controls attached around a computer setup. The hardware con-
trols are assembled in various configurations, for instance to control a music
player, navigate a map on a wall display, and build a game controller [Villar and
Gellersen, 2007]. Their examples greatly enhance the user experience with tradi-
tional desktop applications, and illustrate how specialised physical user interfaces
can simplify the interaction with information technology. The hardware system,
however, is also limited to the specific set of available hardware controls, and it
focuses on the development of local user interfaces extending the usage of desk-
top applications. Therefore, the system does not include specific support for the
distributed development of physical user interfaces.

3.4.8 iStuff Toolkit

With the iStuff toolkit Ballagas et al. [2003] introduce a runtime platform and de-
veloper tools that support the building of novel input devices to control GUI soft-
ware. Besides wired components (like most of the Phidgets hardware), the toolkit
supports wireless input devices (e. g., wireless connected sliders, switches). The
iStuff architecture is built on top of the Event Heap [Johanson and Fox, 2002],

42

Chapter 3 Requirements and Toolkit Research

which provides a networked tuple-space and an event notification mechanism.
Using this network system, the toolkit handles hardware as event publishers and
listeners. The software that handles a hardware component raises events when
the hardware senses changes, and in return they change the hardware actuators
if incoming events are received. Although the event-based programming model of
the toolkit is a very lightweight technique for experienced developers, the toolkit
does not offer a programming library with proxy objects (and the corresponding
properties, methods, and events) for the hardware access. Moreover, the devel-
opers need to know the event protocol to access the hardware and have to handle
the network events directly.

The PatchPanel [Ballagas et al., 2004] application is an extension of the iStuff
toolkit, and allows developers to rapidly reconfigure the data flow between con-
nected sensors and actuators. It provides methods to map and translate the in-
coming sensor events to outgoing events (e. g., to control an actuator). This is a
very powerful mechanism to reconfigure the event flow between hardware and
applications. The development utilities of the Shared Phidgets toolkit integrate
a similar mapping functionality between hardware and appliances. It does not,
however, integrate the scripting functionality of the PatchPanel, as the focus of
the Shared Phidgets toolkit

With the iStuff Mobile toolkit, Ballagas et al. [2007] furthermore introduce a vi-
sual editor for designers to prototype new interactions with mobile devices (for
instance mobile phones). Physical sensors (e. g., accelerometer, pressure sensor)
can be attached to the mobile phone, and the visual editor allows designers to
rapidly develop applications based on the sensed events. Designers can com-
pose the data flow between sensors, actuators, and the application in the graph-
ical editor, by adding proxy objects in the editor and defining the links between
these objects (in a similar way as the graph editor of the ECT [Egglestone et al.,
2006]). Ballagas et al. [2007] introduce various example applications with sen-
sor equipped mobile phones. For instance, this includes an application for the
scrolling of photo collections based on tilting the phone, text input supported by
phone tilting, automatic changes of the ring tone profile, and interaction of the
mobile phone with large screens [Ballagas et al., 2007].

The iStuff Mobile toolkit addresses interaction designers using the graphical edi-
tor user interface, whereas the Shared Phidgets toolkit addresses developers pro-
gramming information appliances. Nonetheless, the graphical representation of
the data flow between the physical components is a helpful visualisation for de-
velopers as well; for instance for monitoring, testing, and debugging of the de-
veloped appliances. The visualisation utilities of the Shared Phidgets toolkit are
providing a similar view of the data flow of the distributed appliances.

43

Chapter 3 Requirements and Toolkit Research

Figure 3.6: Event Heap visualisation for debugging [Morris, 2004].

In terms of support for the distributed development and debugging, Morris [2004]
developed a visualisation for the Event Heap infrastructure. Although this visual-
isation is not directly integrated into the iStuff toolkit, it uses the same network
event system (the Event Heap), and it introduces a valuable utility that supports
the debugging of distributed applications. The developers of ubiquitous comput-
ing applications can use this utility to get a visualisation of all connected computer
systems (the grid in Figure 3.6), and observe the events these systems raise in the
distributed Event Heap network (the circle shapes in Figure 3.6), where the posi-
tion, size, and colour of these shapes characterise the event attributes (e. g., event
type, time to live). Therewith, the visualisation “assisted novice users of [the] ubi-
comp environment with debugging and system understanding” [Morris, 2004]. They
can easily find out if a system is not responding, which systems are available, or
if wrong events are raised or forwarded. The observe and control utilities of the
Shared Phidgets toolkit address similar issues of the distributed development that
are introduced in Chapter 6.

3.4.9 Overview of the Reviewed Toolkits

The previously reviewed toolkits vary in their supported prototyping techniques
and provided programmer support for the development of distributed physical
user interfaces. A comparison of the toolkit’s implemented functionality cannot
be completely balanced, as they are partially designed to address slightly diverse
target applications. Nonetheless, all of the toolkits do support the development
of local tangible and physical user interfaces, and partially they also support the
distributed development. Table 3.1 summarises the toolkit characteristics in terms
of the three categories introduced with the requirements in Section 3.3.

First, the toolkits vary in their implementation of a runtime platform and infras-
tructure that allows the access to distributed hardware. They all hide the imple-
mentation details of the hardware access from the developer, and in the majority
of the cases they allow the attaching/detaching of sensor or actuator hardware dy-

44

Chapter 3 Requirements and Toolkit Research

Ph
id
ge
ts

(G
re
en
be
rg
 a
nd
 F
itc

he
tt,
 2
00
1)

C
on
te
xt
 T
oo
lk
it

(D
ey
, 2
00
0,
 S
al
be
r e

t a
l.,
 1
99
9)

Pe
ri
ph
er
al
 D
is
pl
ay
 T
oo
lk
it

(M
at
th
ew

s e
t a

l.,
 2
00
4)

Pa
pi
er
 M
âc
hé

(K
le
m
m
er
 e
t a

l.,
 2
00
4)

C
al
de
r,
BO
X
ES

(H
ud

so
n
an

d
M
an

ko
ff,
 2
00
6)

Eq
ua
to
r ‐
 E
C
T

(G
re
en
ha

lg
h
et
 a
l.,
 2
00
4)

V
oo
do
o
IO
 T
oo
lk
it

(V
ill
ar
 a
nd
 G
el
le
rs
en
, 2
00
7)

iS
tu
ff
 T
oo
lk
it

(B
al
la
ga
s e

t a
l.,
 2
00
3)

Runtime Platform and Infrastructure

Hide hardware access

Adding/removing hardware dynamically
(plug&play)

Integrate distributed networking layer

Flexible runtime reconfiguration

Facilitate extensions and integration of custom
hardware (e.g., plug‐in based)

Development and Prototyping Support

Development library and OOP concepts

Event‐driven architecture

Software proxy objects for hardware components
(e.g., JavaBeans, .NET)

Visual user interface representations of hardware
components

Transparent accessable distributed data model

High‐level abstractions / events

Metadata integration

Seamless integration into development tools (e.g.,
infrastructure exploration as IDE plug‐in)

Development Utilities (Monitoring, Controlling, Debugging, Simulating)

Infrastructure explorer / observer

Controlling and initialising of hardware

Application / appliance observer and control

Event visualisations (e.g., network)

Testing and debugging support
(e.g., Wizard of Oz simulations, test cases)

Table 3.1: Overview of the prototyping toolkits in the related work (= supported/implemented,
= partially supported/implemented).

45

Chapter 3 Requirements and Toolkit Research

namically. They do, however, only partially implement a distributed networking
layer, or allow the dynamic reconfiguration of running applications. Another im-
portant requirement, the support of extensions for integrating custom hardware,
is also not implemented in all reviewed toolkits.

Second, the support for the development and prototyping differs between the tool-
kits. Although all of them offer the object-oriented programming support and an
event-driven architecture, only a few of them encapsulate the specific hardware’s
behaviour in reusable software building blocks with an easy to use API (e. g., as
.NET Common Language Runtime (CLR) components [Meijer and Gough, 2000]).
Only three of the toolkits implement GUI representations of the hardware device
status. Partially, the toolkits allow the access to the distributed data model (e. g.,
to handle network events directly), the publishing of high-level or abstract events
(e. g., building interpreters for raw sensor data), or the utilisation of metadata
entries (e. g., to assign more specific location information to a sensor). Only par-
tially supported is the seamless integration of the toolkit or its utilities into the
programming environments (e. g., the Java Eclipse IDE, or Visual Studio).

Third, the toolkits provide diverse development utilities. On the one hand, all
nine toolkits implement some sort of exploration utility to monitor the local or
distributed infrastructure of current hardware. On the other hand, only few of
them allow the interactive control or initialisation of the hardware with a GUI,
the exploration of built appliances, or the visualisation of appliance events. Fur-
thermore, five of the toolkits implement means for the simulation of hardware or
appliances.

The review in this section and the comparison in Table 3.1 have highlighted the
diversity of the existing toolkits. The review also showed that the available tool-
kits only partially fulfil the requirements for distributed physical user interfaces.
Therefore, the next chapter begins with the in-depth description of the Shared
Phidgets toolkit to fulfil the requirements.

3.5 Chapter Summary

This chapter introduced the background of prototyping concepts, summarised the
important requirements of a rapid prototyping toolkit for distributed physical user
interfaces, and gave a review of related work. In this review, the concepts and
implementations of previous developed toolkits have been described, with a focus
on their developer support for programming distributed hardware components.
The next chapter now introduces the architecture of the Shared Phidgets toolkit
that addresses the requirements described earlier in this chapter.

46

CHAPTER 4

Runtime Platform

In the previous chapter the requirements of a rapid prototyping toolkit for the de-
velopment of distributed physical user interfaces were introduced. Furthermore,
the related work of prototyping toolkits has been reviewed. These toolkits ei-
ther only address the development of local physical user interfaces, or they allow
the assembly of distributed interfaces on a high-level basis. None of the previ-
ous toolkits addresses all the requirements explained in Section 3.3, whereas the
most important requirement is the facilitation of the programming of distributed
physical user interfaces for average programmers as well as expert developers.
Therefore, this chapter introduces the concept of the Shared Phidgets toolkit that
supports the rapid prototyping of distributed information appliances.

4.1 Overview of the Shared Phidgets toolkit

This section covers the description of the overall architecture of the Shared Phid-
gets toolkit (that is illustrated in Figure 4.1), and therefore outlines the contents
of this and the following two chapters.

The Shared Phidgets toolkit consists of three main parts that facilitate the devel-
opment of distributed physical interfaces. First, it includes a runtime platform that
allows the access to the physical user interface components from distributed client
machines over a network. Second, a developer library supports the development
of distributed information appliances. Third, a set of development utilities allow
the monitoring, controlling, simulating, and debugging of developed appliances
and distributed hardware devices.

47

Chapter 4 Runtime Platform

Figure 4.1: Architecture and main components of the toolkit.

The distributed sensors and actuators illustrated in Figure 4.1(a) are essential
parts for the physical user interface of the information appliances. The end users

48

Chapter 4 Runtime Platform

work with these information appliances through the interaction with the phys-
ical user interface. By using the Shared Phidgets runtime platform (illustrated
in the centre of Figure 4.1) developers can easily instantiate infrastructures of
network connected physical hardware sensors and actuators with minimal ad-
ministrative efforts. The Connector software shown in Figure 4.1(b) maintains a
shared data space that allows the distributed access from the client computers to
an abstract data model of each utilised hardware device. Plug-ins of the Connec-
tor mediate between this shared data space and the hardware devices (shown in
Figure 4.1(c)). These plug-ins either access locally connected hardware or they
connect to other network services that in turn access the hardware devices as
shown in Figure 4.1(d). Concept and implementation of this shared data space,
as well as details of the Connector software and plug-in architecture, are intro-
duced in this chapter.

To build their envisioned information appliances for the physical interactions, de-
velopers can write an appliance control software (shown in Figure 4.1(e)). This
software can be executed on any of the networked client machines, and observes
and controls the hardware via the shared data space. To facilitate the develop-
ment, the Shared Phidgets toolkit provides a developer library that is illustrated
in Figure 4.1(f)). This library allows the programming of information appliances
by means of diverse programming strategies (cf. Figure 4.1(g)). The toolkit also
allows the utilisation of high-level events (cf. Figure 4.1(h)) to support appliances
that publish aggregated or interpreted high-level information to the shared data
space. These strategies, as well as the appliance development, the seamless IDE
integration (cf. Figure 4.1(i)), and the implementation issues of the extensible
class framework are introduced in the subsequent Chapter 5.

Finally, the third main part of the toolkit is the integration of diverse development
utilities, illustrated in the upper right corner of Figure 4.1. First, the monitoring
and control utilities shown in Figure 4.1(j) allow the access to diverse abstrac-
tion levels of the toolkit’s architecture. Second, the geographical infrastructure
visualisation utility illustrated in Figure 4.1(k) provides insights into the internal
processes and the spatial distribution of appliances. Third, the simulation utilities
shown in Figure 4.1(l) facilitate the testing and debugging of distributed appli-
ances. Concept and implementation details of these development utilities are
introduced in Chapter 6.

This was a general overview of the built Shared Phidgets toolkit architecture and
the outlook of the next three chapters. The chapter continues with a detailed
introduction of the runtime platform concept.

49

Chapter 4 Runtime Platform

Figure 4.2: Overview of the physical user interface input and output components.

4.2 Runtime Platform Concept

This section introduces concepts of the Shared Phidgets toolkit runtime architec-
ture. This includes details about how the toolkit provides distributed access from
client computers to the shared physical hardware devices.

4.2.1 Hardware Integration

As illustrated in Figure 4.1a, hardware devices are assembled to act as information
appliances. These appliances are situated in the environment and provide the
physical interfaces for the interaction with end users. Appliances can comprise
various types of input and output hardware. The following sensor and actuator
elements illustrated in Figure 4.2 are available as hardware building blocks for
developed appliances:

◦ Input Sensors: motion, temperature, force, proximity, magnetic field, light,
vibration, acceleration, GPS satellite signals

◦ Input Controls: switches, dials, sliders, touch controls, joysticks, key fobs,
RFID readers

◦ Output Actuators: servos, motors, solenoids

◦ Output Displays: text displays, graphic displays, lights

50

Chapter 4 Runtime Platform

By using Input Sensors, appliances can get implicit sensor data about the context
of the environment. This enables the appliances to interpret this data to derive
high-level context information [Salber et al., 1999]. For instance, light and mo-
tion sensors can provide useful context information about the current utilisation
of a meeting room (e. g., daylight and movement can be interpreted as a nor-
mal meeting, dimmed lights and less movement as an ongoing presentation, and
darkness and no movement as an empty meeting room).

Input Controls are used for direct feedback of users to the information appliance.
With the integration of these physical input controls, developers can build ap-
pliances that suggest possible actions to users. Norman [1988] describes this as
affordances: the perceived action possibilities (as described earlier in Section 3.2).
For instance, a physical button can suggest users to push the button to trigger an
action, as the users fall back on their previous experiences with such objects.

To provide explicit feedback to users, appliances can change the location or status
of objects in the environment with Output Actuators. For instance, servo motors
can be used to rotate objects or to open and close a container.

The Output Displays are the other form of actuators to provide feedback. Small
text displays can show messages and information, whereas graphic displays are
also able to show digital images or videos. Although these displays provide visual
feedback similar to conventional computer screens, they are used differently: the
small output displays are part of the appliance, and they are more flexible in their
application (for example they can be used as ambient displays or to display digital
photos).

These various sensors and actuators are usually connected to the USB or serial
port of a computer. For instance, each of the Phidgets devices is connected to a
USB port, and the devices are then accessible from the local computer. Alternative
connection methods are the serial, parallel, or infrared port of a computer; blue-
tooth; wired or wireless network; or custom radio frequency (RF) transmission
protocols.

To allow the access to these locally connected hardware sensors and actuators,
the Shared Phidgets toolkit runtime platform includes the Connector software (cf.
Figure 4.1(b)) that is running on the client computers. This software, in combina-
tion with a set of plug-ins, acts as a mediator between the network of the Shared
Phidgets infrastructure and the hardware that is connected to the client comput-
ers. The plug-in architecture of the Connector addresses the required extensibility
of the runtime platform (cf. Section 3.3). To allow the easy integration of custom
hardware, the specific implementation for each hardware device is encapsulated
in the plug-ins. A basic set of plug-in reference implementations is provided by the
toolkit. These reference plug-ins integrate various physical user interface compo-

51

Chapter 4 Runtime Platform

nents: Phidgets hardware devices [Phidgets Inc., 2008], a GPS1 receiver, a GSM2

modem, and graphic LCD screens. Custom plug-ins can be developed by expe-
rienced developers when new hardware should be integrated; the details of the
plug-in implementation are described at the end of this chapter.

In summary, the toolkit offers the developer the access to a large collection of
physical hardware devices that can be integrated into their distributed appliances.
The Connector software and integrated plug-ins access the local hardware devices
and allow the distributed access from the client computers over the network.
This network access with a distributed data space is introduced in the following
subsection.

4.2.2 Shared Distributed Data Space

To allow the distributed access to shared hardware over the network, the Shared
Phidgets toolkit maintains a shared data space with abstract representations of all
distributed toolkit components. This shared data space is provided by a shared
dictionary of the .NETWORKING toolkit [Boyle and Greenberg, 2005]. This tool-
kit provides a shared dictionary server as a central instance of the shared data
structure. Client instances of the shared dictionary open connections to the server
instance to read or write data objects to/from the dictionary. These operations are
similar to accessing a local hashtable data structure, with the difference that the
instances of the shared dictionaries are synchronised between all client machines
and the server over the network. The data objects in the shared dictionary are
represented as hierarchical key/value pairs. The keys of these data entries are
organised as path expressions (e. g., /root/subentry/). The values can be prim-
itive data types (e. g., boolean, integer, float) as well as complex data structures
(e. g., lists, vectors, maps).

The shared dictionary also provides a notification mechanism that works similar
to the Stanford Event Heap [Johanson and Fox, 2002] and the Elvin server [Fitz-
patrick et al., 2002]. Clients can register to receive notifications of changes in the
data structure. These subscriptions also define which part of the shared dictionary
is synchronised between the client and the server: a client can subscribe only for
a particular subset of entries from the dictionary, and hence only changes of these
entries are transmitted from the server instance to the client.

The Shared Phidgets toolkit automatically creates all necessary connections to the
shared dictionary, subscribes for events, adds event handlers, and interprets and

1 Global Positioning System
2 Global System for Mobile Communications

52

Chapter 4 Runtime Platform

forwards the shared data space events. Although developers can decide to access
the shared dictionary directly (one of the programming strategies explained in
Subsection 5.1.1), typically the handling of these network connections and events
is hidden from the developer.

Choosing the centralised architecture of the .NETWORKING notification server
as the network basis of the Shared Phidgets toolkit implies certain drawbacks
though. Client-server architectures usually do not scale very well, and with a
high number of connected client instances the server can be the bottleneck of the
distributed architecture. The routing of all sensor events through the single server
instance could lead to latency problems. The synchronisation of dictionary values
between the server and clients also cause high network traffic. Furthermore, a
centralised server is also a weak point that affects the complete infrastructure in
the case that failures occur.

Nonetheless, in previous research projects of prototyping toolkits, client-server
architectures with notification servers have been proven to provide adequate per-
formance for the demands of the developed applications (e. g., in ECT [Green-
halgh et al., 2004], Context Toolkit [Salber et al., 1999], or PTK [Matthews
et al., 2004]). The centralised notification servers avoid the complex manage-
ment of decentralised peer-to-peer and ad hoc communication systems (as it is
often used for large scale sensor networks). Moreover, a notification server archi-
tecture could be replaced by more advanced shared peer-to-peer architectures, or
by advanced servers implementing load balancing strategies [Bienkowski et al.,
2005], as for instance later versions of the IBM TSpace server [Lehman et al.,
2001]. To minimise the drawbacks of the client-server architecture and the costly
synchronisation between clients and server, the Shared Phidgets toolkit is auto-
matically managing fine grained subscriptions for events of the shared dictionary.
This ensures that information is only synchronised between the server and client,
if the data of this shared dictionary entry is needed by the software running on
the client.

4.2.3 Distributed Model-View-Controller

To allow multiple client machines to observe and control the hardware devices,
the access is mediated with a distributed Model-View-Controller pattern [Green-
berg and Roseman, 1999]. Figure 4.3 illustrates the shared model representation
with multiple views and controllers. The model comprises the abstract represen-
tations of all shared hardware devices, whereas the hardware and the controlling
software can operate as views and/or controllers. Hardware devices work as a
controller (illustrated in Figure 4.3(a)) if they change entries in the model, for

53

Chapter 4 Runtime Platform

Figure 4.3: Distributed Model-View-Controller pattern.

instance because the current value of a sensor is updated. The shared data model
of the hardware covers a complete abstract representation of the hardware and
the current status as shown in Figure 4.3(b). Based on this abstract model, the
software on the client side can create multiple views onto this hardware model
as illustrated in Figure 4.3(c). A view for the software would be for instance a
graphical visualisation of the hardware status. The software can also operate as
controller (cf. Figure 4.3(d)); in this case it changes the hardware’s data model
representation. In turn, the hardware changes its status according the changed
model entries (cf. Figure 4.3(e)).

In summary, the distributed Model-View-Controller pattern allows the abstract rep-
resentation of the shared hardware with the current status and properties in the
shared model. Multiple clients can operate as views and controllers at the same
time. The detailed structure of the hardware data model is described in the next
subsection.

4.2.4 Hardware Data Model

Each shared hardware device is represented by a unique set of entries in the
shared data space. These entries define the device type, specific hardware prop-
erties, and the current state.

The structure of these entries in the shared data model is illustrated in Figure 4.4.
All entries that describe a particular hardware device are subentries of the follow-
ing path hierarchy in the data structure: the first part is always the root path of
the toolkit (/sharedphidgets/), the second part is the type identifier of the hard-
ware (e. g., /servo/), and the third part is the serial number (e. g., /418/). With
this path (e. g., /sharedphidgets/servo/418) each hardware device can be iden-

54

Chapter 4 Runtime Platform

Figure 4.4: Abstract hardware model in the shared data space.

tified unambiguously in the shared data model, as the combination of hardware
type and serial is a unique identification. All following parts of the path hierarchy
correspond to the particular attributes of the hardware. These complete path ex-
pressions are the keys of the shared data structure to access the value entries. The
possible entries fall into one of the following three categories: device properties,
status and commands, and metadata.

The first three entries of the device properties are mandatory for all hardware
devices: they specify if the hardware is currently attached to one of the local
computers, the time stamp when the hardware was attached, and the version
number of the hardware. Further entries can define particular static hardware
properties (e. g., the total number of servo motors or digital inputs).

The device status and command entries represent the available input and output
functions of the hardware (shown in the upper part of Figure 4.4). Each input of
the hardware is represented by a separate entry in the data structure (e. g., the
value of a specific sensor can be accessed with the path /sharedphidgets/inter-

facekit/2501/sensor/0). The outputs of the hardware that can be controlled by
the remote client machines are each represented by two entries: the first entry
represents the current status of the output, and the second entry can be accessed
by remote clients to change this output (e. g., the LCD display’s current image is

55

Chapter 4 Runtime Platform

represented by the entries /image and /setimage). This distinction is important
since there can be a delay between the command that changes the output, and
the actual confirmation of the output change. This delay depends on the actua-
tor hardware and can vary between milliseconds up to a few seconds (e. g., the
rotation of a servo motor can take up to a few seconds).

The metadata entries (illustrated in the centre of Figure 4.4) contain additional
information about each hardware device. All of the metadata entries remain in
the /metadata/ subpath of the hardware data model. The metadata information
of each hardware device includes five static properties. The location descrip-
tion (/location) is a string entry describing the current location, whereas the
geographical location (/geolocation) can be added if the exact location of the
hardware is known in longitude and latitude coordinates. It is possible to spec-
ify the owner of the hardware (/owner), the IP address of the local computer
the hardware is connected to (/ip), and a set of keywords to describe the hard-
ware (/keywords). Custom metadata entries can be added from the plug-in that
integrates the hardware, as well as from any client machine. For instance, an
appliance can add metadata entries to hardware devices for identification and
to specify groups of hardware; or a separate tool can assign special RFID tags
to the hardware that facilitate the exploration of these hardware components (a
technique that is described in the following chapter).

In summary, the entries of each hardware device in the shared data model rep-
resent this hardware’s attributes and current status. The entries define a unique
model of each hardware device, and allow the distributed access of views and
controllers on the client machines to observe sensors and control actuators.

4.2.5 Appliance Concept and Data Model

Developers can combine the shared hardware devices to information appliances.
All these appliances comprise two parts: first, the assembly of hardware sen-
sors and actuators (cf. Figure 4.1(a)) that can be combined into a single unit or
distributed across remote locations; and second, a developed software unit that
observes and controls the hardware (cf. Figure 4.1(e)). Furthermore, this con-
trolling software implements the appliance logic of how to handle and interpret
the sensor events. The software controls how the physical actuators or displays
should be modified in response to the measured values. As previously mentioned,
this controlling software unit can be executed from any client machine, because
a synchronised access to the shared data model is provided. While Chapter 5 ex-
plains the development process of appliances in further detail (cf. Figure 4.1(f)),

56

Chapter 4 Runtime Platform

at first the general concept of appliances and their representation in the shared
data space is introduced.

Similar to the representation of each hardware device in the abstract shared data
model, each appliance represents itself as a collection of entries in the path hierar-
chy of the shared dictionary, as listed in Figure 4.5. In order to create unique path
entries for each appliance the path expressions include a globally unique identifier
(GUID)3 [Leach et al., 2005]. The entries of each appliance include information
about the name, a connection timestamp, and IP address (shown in lines 1–3 of
Figure 4.5), as well as a listing of all hardware sensors and actuators that are ad-
dressed from this appliance (cf. lines 5–9 of Figure 4.5). The latter is important
for the dynamic configuration of the appliances: by setting the /externalseri-

al/ subpath of any of the registered devices of the appliance, it is possible to map
this implementation to a different hardware device of the same type. Further-
more, the listing of the addressed hardware devices also allows the observation
of appliances and their incoming and outgoing events; this is fundamental for the
observer utilities introduced in Chapter 6.

Appliances can be implemented as aggregators or interpreters of incoming sensor
events and therewith can provide a similar functionality as the Aggregates intro-
duced by Dey [2000] and Salber et al. [1999]. Therefore, the appliance’s data
model also includes entries to publish high-level events. The entries of the /pro-

cessing/ subpath comprise all these events of the appliance (cf. lines 11 and 12
of Figure 4.5). These high-level values can be for instance results of a calculation
based on various incoming sensor events or an identified pattern in an observed
series of sensor values. Any client that is connected to the shared data space can
then register to receive notifications about changes of these high-level values.

1 /appliance/<guid >/ appliancename = Sticky Spots

2 /appliance/<guid >/ timestamp = 20/10/2007 04:56:45

3 /appliance/<guid >/ip = 192.168.178.20

4

5 /appliance/<guid >/ components/<cid >/type = rfid

6 /appliance/<guid >/ components/<cid >/ serial = 2967

7 /appliance/<guid >/ components/<cid >/ externalserial = 2967

8 /appliance/<guid >/ components/<cid >/path = /sharedphidgets/rfid /2967/

9 /appliance/<guid >/ components/<cid >/ timestamp = 20/10/2007 05:22:07

10

11 /appliance/<guid >/ processing/<subpath1 > = 42

12 /appliance/<guid >/ processing/<subpath2 > = True

Figure 4.5: Entries of the abstract appliance data model (<guid> = globally unique identification
number for appliances, <cid> = unique component identification.

3 The GUID is a randomly created 128-bit number that can be used as unique identification of
software objects, as the total number of possible keys is so large that the probability of two
identical generated keys is very small [Leach et al., 2005].

57

Chapter 4 Runtime Platform

In summary, these abstract representations of the appliances facilitate the dy-
namic runtime configuration, the observation of the appliance events, and the
re-use of high-level events between appliances. The details of the appliance de-
velopment are explained in Subsection 5.2.1 of the subsequent chapter.

4.2.6 Data Persistence

The Shared Phidgets runtime platform includes a persistent storage of the specific
entries in the shared data space. This persistent storage, integrated in the Con-
nector software, saves entries of the shared data space and loads all stored entries
when the central server instance of the shared data space is started (e. g., after a
computer restart).

Whether or not entries of the shared data space are kept persistent depends on
the type of these entries. On the one hand, the metadata entries of hardware
devices and appliances are stored by default, as they represent custom added
device properties. On the other hand, the status and command entries as well
as the device properties (cf. Subsection 4.2.4) are not stored persistently. These
entries represent the current status of the hardware device and they are only
available when the hardware is attached to one of the client machines. Therefore,
the platform currently does not store the history of occurred events. As introduced
in the following chapter, the developer toolkit explicitly emphasises the utilisation
of the event-driven programming methods. If the history of events is needed
though, custom storage methods for these values have to be implemented by the
developer.

4.2.7 Security and Privacy

For the development of ubiquitous computing applications, security and privacy
issues have to be considered [Weiser, 1991; Abowd and Mynatt, 2000]. Security
issues of a system include the need for restricted access to the system, and the
secure transfer and storage of the information (e. g., by password protection, and
encryption). Privacy aspects include the limited and monitored access of others
to the private data a system might store about users. It is also necessary that
users have knowledge about the information that the system gathers and derives
from the environment (e. g., sensor values). Although the developed Shared Phid-
gets toolkit as a rapid prototyping toolkit implies lower demands on the security
aspect of the systems, it nevertheless implements basic security and privacy fea-

58

Chapter 4 Runtime Platform

tures: password protection, hiding of hardware from the shared data space, and
transparent feedback for users.

By using the password protection, users and developers can limit the access to the
shared dictionary. This password security is provided by the .NETWORKING toolkit
[Boyle and Greenberg, 2005] and allows restricting the access to the shared data
space. With the hiding of hardware from the shared data space users can limit the
access of others to their own hardware devices. In the Connector software, each
device can be set as private and is then only accessible from the local computer.
Consequently, this allows users to control the outgoing information of the locally
connected sensors. Finally, the transparent feedback for users ensures that they can
easily monitor the status of the distributed infrastructure. These monitoring util-
ities are introduced in Chapter 6; they allow insights into the transmitted events
between hardware devices and the software.

Nonetheless, it is important to note that these integrated features of the toolkit
only provide a basic level of security and privacy protection. The prototyping tool-
kit does not fulfil all security demands of deployed ubiquitous computing systems
[Abowd, 1996; Abowd and Mynatt, 2000]. The toolkit does not yet include a fine
grained access control (e. g., with user roles that define the user’s right to access
information in the shared data space), just as it does not support network connec-
tions secured with encryption algorithms. Developers have to be aware of these
restrictions that the prototyping toolkit implies, and should consider additional
security and privacy techniques before deploying systems.

4.3 User Interaction with the Platform

The most important characteristic of the runtime platform is that it automates the
process of sharing and managing the hardware and works autonomously with a
minimum of necessary user4 interaction. The Connector software runs on each
client machine and resides in the background of the operating system. It au-
tonomously manages the available plug-ins that in turn handle the access to the
locally connected hardware, and it registers each hardware device in the shared
dictionary. Typically, the developers will rarely notice the Connector and the plug-
ins, as they automatically find and share new hardware components when they
are connected to a local computer (e. g., sensors or displays connected with a USB
cable). Nonetheless, the user can access the GUI of the Connector to change the
settings, start and stop plug-ins, and set options for the shared hardware.

4 Users in this case are the prototype developers. However, the Connector software of the run-
time platform can also be used by people with no programming experience if they use a
deployed information appliance.

59

Chapter 4 Runtime Platform

(a) Plug-in overview (b) Configuration settings

Figure 4.6: User interface of the Connector software.

Figure 4.6 shows the Connector user interface. The plug-in overview interface
is shown in Figure 4.6(a) and provides options for activating and deactivating
plug-ins, deciding which plug-ins are activated automatically when the software
starts, viewing the message log, and opening the plug-in configuration windows.
In this configuration window, all settings of the plug-in can be changed. The
local hardware devices that are currently managed by the plug-ins are visible
in the shared device overview. The user can view the hardware settings, and
change the metadata attributes for each local hardware device. Users can also set
the hardware to be excluded from the shared data space (i. e., the hardware is
then only available locally and is not available from other computers connected
over the network as described earlier in Subsection 4.2.7). Finally, the network
configuration (cf. Figure 4.6(b)) can be changed (e. g., the shared dictionary
address, local or remote server, password) and users can alter the options of the
persistent storage.

While this section has briefly introduced the user interface to configure the Con-
nector and the plug-ins, usually the software runs hidden in the background of the
operating system. This is important to minimise the necessary workload for de-
velopers when creating a networked infrastructure of hardware devices that they
can integrate into the appliances to built.

4.4 Implementation Details and Extensibility

By using the plug-in architecture of the Connector tool, developers can easily in-
tegrate custom hardware components into the toolkit architecture. The plug-ins

60

Chapter 4 Runtime Platform

encapsulate the access to the hardware components, and therefore intermediate
between the hardware and the data model in the shared dictionary. While this ar-
chitecture is usually hidden from the user, expert developers can extend the toolkit
with custom plug-in implementations to integrate additional hardware sensors or
actuators.

The Shared Phidgets toolkit software is developed on Microsoft Windows XP using
C# 2.0 of the Microsoft .NET CLR [Meijer and Gough, 2000]. The code examples
in this thesis are also written in C#.NET. Nonetheless, all available .NET CLR
development languages can be used alternatively (i. e., C++, C#, Visual Basic,
and J#). More information about the development requirements of the toolkit
can be found in Appendix A.1.

4.4.1 Plug-in Architecture

The plug-in architecture defines the interfaces between the plug-in host compo-
nent (the Connector software) and the plug-in implementations. The architecture
also provides base classes and templates, to minimise the efforts for the devel-
opers when implementing custom plug-ins. The following section describes this
plug-in architecture and the plug-in reference implementations.

Figure 4.7: UML class diagram of the plug-in architecture.

61

Chapter 4 Runtime Platform

The class diagram in Figure 4.7 gives an overview of the Connector plug-in archi-
tecture. The interfaces define the class responsibilities: the IPlugin has to be im-
plemented by all plug-in components (e. g., the PluginPhidgets), and the IPlug-

inHost interface is implemented by the class that manages all plug-ins (in the
toolkit implementation this is the Connector class). A single plug-in can manage
more than one hardware device at a time, and the connection to the shared dictio-
nary for each hardware device is implemented with a ConnectionHandle instance.
All interfaces and base classes are part of the GroupLab.SharedPhidgets.Plugin-

Core namespace.

1 namespace GroupLab.SharedPhidgets.PluginCore {

2 // Interface definition for connector plug -ins.

3 public interface IPlugin {

4 // Properties of the plug -in

5 string Name{get;}

6 string Description{get;}

7 string Version {get;}

8 string MessageLog {get;}

9 bool IsStarted {get;}

10

11 // Methods to manage the plug -in lifetime and status

12 bool Load(IPluginHost host);

13 bool Unload ();

14 bool Start();

15 bool Stop();

16

17 // Show the options dialogue of the plug -in

18 void ShowOptionsDialog(IWin32Window window);

19 } }

Figure 4.8: IPlugin interface.

The IPlugin interface (listed in Figure 4.8) defines three types of properties and
methods for the plug-in. First, the plug-in properties are read by the plug-in host
on startup (e. g., name, description, version) and while the plug-in is executed
(e. g., logging messages). Second, the methods Load/Unload are called once the
plug-in assembly is loaded by the host, and Start/Stop are called to activate and
deactivate the plug-in. Third, the ShowOptionsDialog is called by the plug-in
host to display a dialogue window to set the plug-in properties. By implementing
this interface, classes can be loaded dynamically by the plug-in host, and plug-ins
get a reference to the IPluginHost with the Load method to call methods of the
host.

The IPluginHost interface in Figure 4.9 provides methods for adding and remov-
ing hardware components that are handled by the plug-in. For each hardware
device that a plug-in handles, it calls the AddComponent method of the host to
receive a ConnectionHandle instance. This connection handle wraps the com-
munication with the shared dictionary: it forwards events for all updated entries
of the handled hardware component in the shared dictionary via the Notified

62

Chapter 4 Runtime Platform

1 namespace GroupLab.SharedPhidgets.PluginCore {

2 // Interface definition for the host connector application

3 public interface IPluginHost {

4 // Add a new component ; returns ConnectionHandle

5 ConnectionHandle AddComponent(string type , string serial);

6

7 // Remove component

8 bool RemoveComponent(string type , string serial);

9

10 // Handle settings in the XML configuration file

11 Settings GetSettings ();

12 string GetSetting(string xpath , string def);

13 void PutSetting(string xpath , string value);

14

15 [...]

16 } }

Figure 4.9: IPluginHost interface.

event and provides methods to update entries in the shared dictionary by calling
NotifySharedDictionary. The emphasis of this structure is on the limited access
to the shared data space: the plug-in and the class that handles the hardware
get only access to the subset of data entries for this hardware and can also send
updates only to these entries. Once the hardware component is detached, the
plug-in only calls the RemoveComponent method, and all entries of the data model
are removed from the shared dictionary.

To save and load settings (e. g., port settings, device properties) the plug-in can
access the GetSetting and PutSetting methods of the plug-in host. The plug-in
host saves these settings in an XML file, including XPath entries [World Wide Web
Consortium (W3C), 1999] for all settings added by the plug-ins. Although plug-
ins can implement their own persistent storage of settings, these methods can be
used as centralised storage of all configuration settings.

The UML activity diagram in Figure 4.10 illustrates the registration process of a
plug-in, and the wrapped access to the shared dictionary with the Connection-

Handle. First, the Connector class creates the SharedDictionary instance and
loads the class instances (that implement the IPlugin interface) from the as-
sembly files. The Connector loads and starts the plug-in. For each hardware
device that this plug-in handles, the plug-in class creates a Component instance
and registers this hardware device at the IPluginHost to get the corresponding
ConnectionHandle. This handle wraps the access to the SharedDictionary and
the Subscriptions. When the hardware status changes (e. g., events triggered by
a motion sensor) the component implementation notifies the ConnectionHandle

that updates the entries in the dictionary to notify all subscribers. On the other
hand, when an entry of the hardware’s data model in the shared dictionary is
changed (e. g., the command to change the position of a servo motor) the Con-

63

Chapter 4 Runtime Platform

nectionHandle notifies the component implementation of the plug-in to handle
these changes.

Figure 4.10: UML activity diagram of the plug-in architecture: loading of plug-ins and event
registration.

To implement custom plug-ins developers have to import the PluginCore library
file and can then compile the implemented plug-in as Dynamic-Link Library (DLL)5

assembly. These assemblies can then be copied to the Plugins directory of the
Connector. On startup the Connector tool scans all assemblies in this directory
and searches for the implementation of the IPlugin interface. The assemblies
with class files that implement this interface are integrated dynamically with the
Activator.CreateInstance() method. The following section briefly describes
the plug-in reference implementations.

5 Dynamic-Link Libraries: these shared libraries are linked to an executable program at runtime.
They are the library assemblies of the Common Language Infrastructure [Meijer and Gough,
2000].

64

Chapter 4 Runtime Platform

4.4.2 Plug-in Reference Implementations

The Shared Phidgets toolkit includes five plug-ins that handle the integration
of hardware components to the runtime platform. The following list gives an
overview of these plug-ins and highlights implementation details:

◦ PluginPhidgets:
This plug-in can integrate all available Phidgets hardware components to
the shared data space [Phidgets Inc., 2008]. The plug-in observes the local
computer for any Phidgets hardware that is connected to one of the USB
ports. Once a hardware component is found, it is immediately registered at
the plug-in host and the data model of the hardware device is added to the
shared dictionary. The plug-in includes a base class for generic properties
and methods (PhidgetDevice) and derived classes for specific implementa-
tions of the Phidgets hardware types. These derived classes manage the for-
warding of the occurred sensor events to the shared dictionary by using the
ConnectionHandle. They respond in return to all changes of the hardware
data model in the shared dictionary and control the actuators accordingly.
The plug-in accesses the hardware via the Phidgets Inc. 2.1 driver library
[Phidgets Inc., 2008].

◦ PluginPhidgetsRemote:
This separate plug-in is included in the PluginPhidgets assembly, and man-
ages the connection to the Phidgets Inc. socket servers [Phidgets Inc., 2008]
(e. g., Linux servers running on embedded hardware). Users can specify the
remote IP addresses of these socket servers in the plug-in’s options win-
dow. The plug-in then automatically connects to these servers and observes
them for connected hardware. Once a Phidgets hardware device is found,
the plug-in integrates this device into the shared data space similar to the
plug-in for local Phidgets. Hence, this plug-in integrates the external Phid-
gets Inc. servers into the platform and enables the access via the Shared
Phidgets toolkit API.

◦ PluginGraphicLCD:
For the integration of colour graphic LC displays into the architecture, this
plug-in can remotely access a client software running on Windows Mobile 5
systems to display colour images on the screen. The plug-in provides a
socket server, so that the mobile displays can register themselves as client
displays by opening a socket channel to the plug-in (both USB and WLAN
connections are supported). The client software on the mobile displays is
drawing any images sent from the plug-in on the screen and can use tran-
sitions for the changes between two images (e. g., sliding the image to the
right side of the screen). The plug-in automatically rescales oversized im-

65

Chapter 4 Runtime Platform

ages, and compresses images for faster wireless transmission. The utilisation
of wireless PDA devices is only intended as preliminary solution. It allows a
very light-weight integration of wireless graphic displays into the developed
appliance prototypes. Without this encapsulated access to the display hard-
ware, it would be necessary for developers to implement complex custom
software for the mobile operating system on the client device. The next ver-
sion of this plug-in will support the ezLCD6 screens as separate hardware to
display colour graphic images.

◦ PluginGPS:
This plug-in integrates GPS receiver hardware that delivers GPS data in the
National Marine Electronics Association (NMEA) GPS format. The plug-in
communicates via a serial port connection to access the data stream from
the GPS receiver. It parses the $GPGGA information (Global Positioning Sys-
tem Fix Data) to extract the longitude and latitude coordinates of the cur-
rent location. The plug-in converts this location that is given in degrees
and minutes to decimal coordinates, and notifies these coordinates to the
shared dictionary. However, it does not yet implement the complete NMEA
command set (e. g., detailed satellite information).

◦ PluginGSM:
By using this plug-in, developers can integrate phone text messaging into
their applications. The plug-in opens the connection to a GSM modem, and
forwards incoming text messages to the shared dictionary. The plug-in can
also send text messages with the GSM modem. Therefore, developers can
send text messages from within their applications and can get notifications
of incoming text messages.

This collection of already implemented reference plug-ins ensures that a basic
collection of physical user interface hardware can be easily connected to any client
machine and is instantly available over the shared data model. Developers can
directly use this collection of hardware, and they do not have to implement any
hardware drivers or the network synchronisation to allow the shared access to the
devices7. Furthermore, if any hardware component is needed that is not already
implemented, the plug-in architecture allows the straightforward integration of
the new hardware’s data model into the shared data space.

6 Colour graphic liquid crystal displays (LCD) http://www.ezlcd.com/
7 A complete listing of all hardware devices that are implemented with these plug-ins can be

found in Appendix C, and a listing of all .NET components of the developer library can be
found in Appendix B

66

Chapter 4 Runtime Platform

4.5 Chapter Summary

This chapter introduced the architecture of the Shared Phidgets toolkit that allows
the distributed access to connected hardware components. The shared data space
contains abstract model representations of the hardware. Client machines can
generate views onto this model or operate as controllers to change the hardware
status. This distributed Model-View-Controller pattern is implemented with the
toolkit’s Connector software that is running on all client machines and manages
the network access to a shared data space. The plug-in architecture allows the
integration of custom hardware, and five reference plug-ins are implemented to
already integrate a collection of physical user interface hardware into the Shared
Phidgets system.

The following chapter now introduces the toolkit’s developer library that pro-
vides a collection of programming building blocks that facilitate the access to this
shared data model.

67

CHAPTER 5

Toolkit Developer Library

The runtime platform that was introduced in the previous chapter enables the
distributed access to the shared hardware devices. While this provides the foun-
dation for the distributed access to the hardware, it does not facilitate the tasks
that developers have to cope with when prototyping new information appliances
with these hardware devices. Therefore, this chapter introduces the Shared Phid-
gets developer library that facilitates these programming tasks by means of diverse
programming strategies, an object-oriented API, and a seamless integration into
the development environment.

The chapter begins by explaining the structure of the developer library. Next, the
fundamental programming strategies are introduced: direct access to the shared
data model, using the object-oriented API of the proxy objects, and utilising inter-
face skins. Next, details of the information appliance development are explained.
Finally, details of the implementation are described.

5.1 Library Structure and Development Strategies

For the design of the developer library of the Shared Phidgets toolkit it is an
important objective and requirement (cf. Section 3.3) to provide a low thresh-
old for average developers and a high ceiling for expert developers, as previously
described in Section 3.1 [Myers et al., 2000]. To achieve this goal, the toolkit
implements a framework of programming components that addresses developers
with diverse programming skills. With it, the toolkit supports the development
based on varying abstraction levels, in that it allows average developers with mod-
erate programming skills to easily learn and use the toolkit’s capabilities. At the

68

Chapter 5 Toolkit Developer Library

same time it gives expert developers the tools for efficient and advanced program-
ming of the hardware. The next sections of the chapter introduce the supported
programming concepts as illustrated in Figure 5.1. It is important to note that
developers can easily mix and match any of these development strategies.

Figure 5.1: Developer library structure and programming strategies.

5.1.1 Programming via the Abstract Data Model

With this first programming strategy, developers can access the abstract data
model of the hardware devices in the shared dictionary directly as illustrated
in Figure 5.1(a). Therewith, developers gain powerful control of the infrastruc-
ture events and the distributed hardware. The programmers, however, have to
be familiar with the distributed model-view-controller pattern and the abstract
data model of the Shared Phidgets toolkit; and they need to know how to use the
.NETWORKING shared dictionary API.

69

Chapter 5 Toolkit Developer Library

If developers choose this implementation strategy, they receive notifications of up-
dated entries in the shared dictionary path hierarchy by adding subscription ob-
jects to their software. Furthermore, the developers need to add the correspond-
ing event handlers for the notifications, parse and interpret the incoming events,
and in turn modify entries in the shared data space to control actuator hardware.
With these techniques, developers can easily iterate through collections of shared
data model key/value pairs. Here, developers can utilise the pattern expressions
provided by the .NETWORKING toolkit that allow path description patterns similar
to regular expressions. Thus, the ’?’ character works as a placeholder for a single
path hierarchy level, whereas the ’*’ character can stand for multiple levels. For
instance, the following path expression generates matches for all entries of the
servo’s abstract model that control the current position of the motors.
/sharedphidgets/servo /?/ setservoposition /?/

Developers can iterate through these collections of dictionary entries to control
multiple hardware devices at the same time by altering the actuator control en-
tries (e. g., reset the position of all servo motors by setting the value to 0). Another
example of the pattern matching technique would be a collection of analog sen-
sor values that can be for instance useful when calculating the average value of a
collection of connected temperature sensors:
/sharedphidgets /*/ sensor /0/

Furthermore, the direct access to the shared data model allows the exploration of
the metadata entries. Developers can easily find collections of metadata entries
that match a particular pattern, for instance the geographical location entries of
all connected hardware devices.
/sharedphidgets /*/ metadata/geolocation/

Overall, the programming based on event notifications and entries in a shared
data space provides a powerful programming technique and has been previously
applied in toolkits for the rapid prototyping (e. g., in the iStuff toolkit [Ballagas
et al., 2003]). This technique, however, requires advanced programming knowl-
edge. Therefore, it does not provide a low threshold for average programmers
that learn the programming of information appliances. For this reason, the devel-
oper library includes a collection of high-level programming components that are
introduced in the next chapter.

5.1.2 Hardware Proxy Object API

The developer library includes a collection of proxy objects that encapsulate the
specific properties of each of the hardware elements (cf. Figure 5.1(b)). For

70

Chapter 5 Toolkit Developer Library

each of the different hardware types exists a corresponding class in the developer
library that provides class properties1 to access the hardware status, event no-
tifications to monitor the status changes, and methods to control the hardware.
Internally, the proxy object accesses the abstract model of the hardware, and the
public API of the class hides the underlying networked infrastructure as well as
the distributed data model from the developer.

For each of the sensor and actuator hardware types that are shared to the net-
work data space with the plug-ins described in Subsection 4.4.2 (the left side of
Figure 5.1) a corresponding class for the hardware proxy object is implemented in
the developer library. This proxy objects implement an API similar to the one that
was introduced by Greenberg and Fitchett [2001] for the local Phidgets toolkit.
Therefore, developers can address the distributed hardware components as they
have used local hardware, while the network architecture and synchronisation is
hidden from the developer. Although the API of the proxy objects remains mostly
unchanged compared to the local Phidgets toolkit, the internal implementation
is replaced. The proxy objects connect to the shared data space and are built
on top of the abstract shared data model of the hardware. The details of this
implementation are explained at the end of the chapter in Section 5.4.

Because the hardware can be located anywhere on the network, it is essential
to identify and map the physical hardware components to their software-side
proxy object. As mentioned earlier in Subsection 4.2.4, the combination of the
hardware type (e. g., Servo, GraphicLCD) and the serial number defines a unique
identification for each physical device. Developers can easily address a particu-
lar hardware by setting the serial number of the hardware; or one device of a
collection of hardware components by specifying multiple serial numbers (lines
1 to 3 in Figure 5.2). Alternatively, they can set the location filter property to
match a hardware at a particular location (line 4 in Figure 5.2). For the advanced
observation of connected devices, the DeviceManager provides the attached and
detached events that notify registered listeners by forwarding the event to their
event handler method (call-back method). In this method developers can check
the device properties and metadata entries for detailed information about the
hardware (lines 6 - 11 in Figure 5.2).

The object-oriented API of the hardware proxy objects matches the programming
paradigms familiar from conventional GUI programming. Developers can easily
alter the hardware’s specific attributes by modifying the class properties. For in-
stance, in lines 1 to 4 of Figure 5.3 a new proxy object for a graphic LC display is
created, the displayed text and the transition effect are changed, and a bitmap is
shown on the screen. The API also allows the easy access to the metadata entries
associated with the wrapped hardware as illustrated in lines 6 and 7 of Figure 5.3.

1 .NET framework concept for combined get/set methods of a class.

71

Chapter 5 Toolkit Developer Library

1 TextLCD lcd = new TextLCD ();

2 lcd.FilterSerialNumbers.Add("12933");

3 lcd.FilterSerialNumbers.Add("8374");

4 lcd.FilterLocations.Add("Building 221, Floor 1");

5

6 DeviceManager manager = new DeviceManager ();

7 manager.Attach += new DeviceManagerEventHandler(manager_Attach);

8

9 private void manager_Attach(object sender , DeviceManagerEventArgs e) {

10 // Check the event attributes for details about the attached device.

11 }

Figure 5.2: Using the API to create proxy objects.

First, it is checked if the location metadata entry matches a particular location;
and second, a new metadata entry is added that assigns this hardware to a partic-
ular appliance. Finally, developers can easily get notifications of the hardware’s
events by registering one or more event handlers. For instance, a new RFID reader
proxy object is instantiated in line 9 (Figure 5.3). An event handler is registered
for the Tag event in line 10 (Figure 5.3) that provides notifications if an RFID tag
is near the reader and provides the ID of the tag as event parameter.

1 GraphicLCD display = new GraphicLCD ();

2 display.Text = "Message text here.";

3 display.Transition = GraphicLCD.TRANSITION_LEFT;

4 display.Image = new Bitmap([...]);

5

6 if(display.DeviceDescription.GetMetadata("location") == "Kitchen") { [...] }

7 display.DeviceDescription.AddMetadata("appliance", "Awareness Display");

8

9 RFID rfid = new RFID();

10 rfid.Tag += new RFIDTagEventHandler(rfid_Tag);

Figure 5.3: Using properties and event handlers.

Using the API of the proxy objects significantly facilitates the access of physical
hardware devices from within the custom software projects. In contrast to the
previously introduced programming technique via the shared dictionary directly,
developers need no advanced knowledge about the underlying shared data space,
the abstract hardware model, or the distributed MVC pattern. Moreover, the avail-
able properties, methods, and events easily reveal the hardware’s capabilities and
empower the programmers to develop the controlling software part with familiar
OOP techniques2.

2 An overview of the most commonly used hardware proxy objects and their API can be found
in Appendix C, as well as in the developer documentation and tutorials [Marquardt, 2008].

72

Chapter 5 Toolkit Developer Library

5.1.3 Interface Skins

When developers are creating the software that implements the program logic of
the distributed user interface they can add a GUI representation of their appli-
ance that allows the monitoring and control of the appliance, even from a remote
location. In order that developers have not to build this GUI from scratch, the
developer library provides interface skins for the hardware devices of the infra-
structure (illustrated in Figure 5.1(c)). These interface skins are wrapper objects
around the proxy objects introduced in the previous section and they basically
display a graphical representation of the hardware’s current status. They include
common GUI widget controls (e. g., buttons, sliders) so that users can directly
control the hardware. With the GUI interface builder (e. g., the form designer in
Visual Studio [Microsoft Corporation, 2007d]) the developers can drag and drop
these GUI counterparts of the hardware onto their designed user interface.

These interface skins that can be used for the appliance control software are not
necessarily a direct part of the envisioned interaction with the end user. In most
cases the interaction with the appliance rather works entirely through the physi-
cal interface and not the software side. In the experience of our research group,
however, these interface skins have been proven to be helpful for developers in un-
derstanding the capabilities and limitations of sensors, observing their behaviour,
and initialising the hardware. Especially developers with no previous program-
ming experience of distributed physical user interfaces can benefit from the graph-
ical representation of the hardware’s status. The graphical interface skins are an
intuitive starting point that encourages the experimentation with the available
hardware at the beginning of the development. They also work as an effective
debugging and testing mechanism in the later stages of the project development.
Furthermore, they are fundamental for the development of the utilities that are
introduced in Chapter 6.

Each of the available hardware device types can be represented by multiple inter-
face skins. These skins can visualise various aspects of the hardware and imple-
ment controls to alter the hardware properties. For instance, the connected sen-
sors, inputs, and outputs of the Phidgets InterfaceKit hardware can be visualised
with the control skin illustrated in Figure 5.1(d) that displays the current status
of the inputs and let the user activate or deactivate the digital outputs. Alterna-
tive interface skins for this hardware are the graph visualisation in Figure 5.1(e)
that shows a graph plot of the sensor values in the last 30 seconds, or the table
illustrated in Figure 5.1(f) that lists all the entries in the shared dictionary that
correspond to the InterfaceKit hardware.

For each of the available hardware devices of the toolkit various interface skins
have been implemented to ease the exploration and control of the hardware. A

73

Chapter 5 Toolkit Developer Library

detailed overview of the implemented interface skins can be found in Appendix C.
Developers can also create their custom interface skins; this is explained in the
implementation part at the end of this chapter.

5.2 Appliance Development

These previously introduced development strategies and the toolkit’s API are es-
sential to facilitate the development of the distributed appliances. Based on these
foundations, the next sections of the chapter introduce the concept details of the
appliance development.

5.2.1 Appliance Development Overview

As all appliances include a representation in the shared data model (cf. Sub-
section 4.2.5), the developer library includes base classes, templates, and helper
classes to automate the necessary appliance registration. Overall, these classes
implement and hide the appliance model in a way that the developers have no
additional efforts when building new appliances.

When developers start with the implementation of a new information appliance,
first of all their appliance control software need to have a network connection
to the shared data space that holds the abstract representations of all currently
active hardware devices. The Shared Phidgets developer library provides base
classes that manage the connection to the network. The easiest way to start a
new appliance control software is by deriving from the Appliance base class. This
class can open and close network connections and registers the appliance at the
shared data space (line 2 of Figure 5.4). It also provides a basic set of properties
and methods to control the appliance. Developers can set the appliance name
(line 5 of Figure 5.4), the shared dictionary address (line 6 of Figure 5.4), and
open the connection (line 7 of Figure 5.4).

1 // Derive from the appliance base class

2 public class Example : GroupLab.SharedPhidgets.Appliances.Appliance {

3 // Constructor ; set appliance properties and open connection

4 public Example (){

5 this.ApplianceName = "Appliance Example";

6 this.SharedDictionaryURL = "tcp :// localhost:sp";

7 this.OpenConnection ();

8 } }

Figure 5.4: Creating the appliance control software.

74

Chapter 5 Toolkit Developer Library

Alternatively to this implementation developers could also choose to add a Con-

nectionManager or ConnectionManagerSkin object to their class. Both of these
components are able to manage the connection to the shared dictionary. Program-
mers could furthermore decide to handle the shared dictionary directly; however,
it is then necessary to manually assign the reference of this shared dictionary to
all of the hardware devices and other components that need network access.

From here, developers can start with the implementation of their control soft-
ware that implements the appliance logic by choosing one of previously described
programming strategies. A programming walkthrough is outlined in Section 5.3,
while more sophisticated example case studies are introduced in Chapter 7.

5.2.2 High-level Events

To support the encapsulation of programming objects and the building of reusable
building blocks, the developed information appliances can furthermore publish
high-level events to the shared dictionary. Thus, other clients on the network
can subscribe for these events and in turn use these high-level values in their
own software application logic. These high-level events represent various types
of information. For instance, an appliance could implement a simple gesture
recogniser and could publish the detected gestures (line 3 of Figure 5.5). Another
appliance could calculate the average temperature out of multiple sensors and
publish this calculated value as well (line 7 of Figure 5.5).

1 // Add a boolean high level event to the shared dictionary

2 // Complete path: / appliance /<id >/ processing / gesturepattern /12/ found

3 this.PublishProcessingValue("gesturepattern /12/ found", True);

4

5 // Add a float value as high level event to the shared dictionary

6 // Complete path: / appliance /<id >/ processing / averagetemperature

7 this.PublishProcessingValue("averagetemperature", 54.7768);

Figure 5.5: High-level appliance events.

Other appliances (located anywhere on the network) can access these high-level
events of the appliance; either by using the ApplianceObserver helper class, or
by subscribing for the corresponding dictionary path manually. Moreover, devel-
opers can even build interface skins for these high-level events of the appliances.
Consequently, this is a light-weight, albeit powerful, method for the implementa-
tion of abstract devices. It simplifies the re-use of processed information of the
appliances (e. g., calculations, context information).

75

Chapter 5 Toolkit Developer Library

5.2.3 Seamless IDE Integration

For the development of a programming toolkit it is not only important to build
an API with the collection of reusable programming objects, but also to provide
means to help developers exploring the functionality of the toolkit [Roseman,
1993; Greenberg, 2007]. As introduced in Section 3.3 it is a basic requirement to
lower the threshold for developers that have no previous experience with program-
ming physical user interfaces. It is important to build on their existing knowledge
and familiarity with development tools [Greenberg, 2007]. To achieve this goal,
the Shared Phidgets toolkit is closely integrated into the programming IDE. The
toolkit provides the following means to simplify the programming process, to sup-
port the infrastructure exploration, and to reveal the toolkit’s capabilities:

1. Project Template:
The template provides an initial development starting point for a new appli-
ance and developers can select this template directly from within the Visual
Studio IDE, as illustrated in Figure 5.6(a). The template includes the ba-
sic class files for a new appliance project, the references to all necessary
libraries, the classes for accessing the shared dictionary, and the appliance
base methods to publish high-level events. It creates a new class framework
and derives from the Appliance base class as described earlier in Subsec-
tion 5.2.1.

2. Visual Designer Integration:
The Shared Phidgets toolkit integrates all available class components and
user controls of the library into the IDE toolbox, as shown in Figure 5.6(b).
Therefore, developers can easily add all components (e. g., the hardware
proxy components) and the user controls (e. g., the interface skins) to the
project by using the visual designer of the IDE. This can speed up the time to
integrate new hardware proxy objects, but also facilitates the development
by means of the property editors and automatic creation of event handler
callback methods.

3. Tutorials and Examples:
The toolkit offers various programming tutorials and step-by-step program-
ming walkthroughs3 as illustrated in Figure 5.6(c). Furthermore, the pro-
vided collection of example applications can help developers to get started
with the development; even if they are unfamiliar with the programming of
physical hardware.

4. Infrastructure Exploration from within the IDE:
The exploration of the infrastructure is available from within the IDE. With

3 Available on the Shared Phidgets toolkit project website [Marquardt, 2008]

76

Chapter 5 Toolkit Developer Library

it, developers can easily explore the currently available hardware, monitor
the current status, and control the hardware’s properties; as for instance for
an Phidget Interface Kit shown in Figure 5.6(d). Developers can explore
available hardware components, view their current status, and control the
hardware’s properties.

5. Automatic Code Framework Generator:
An extension of the previously mentioned explorer view in the IDE is the
automatic code framework generator as shown in Figure 5.6(e). Once de-
velopers have chosen the needed hardware components, this extension gen-
erates the source code to access these hardware from within the application
code. The extension can also create the interface skins and subscriptions for
shared dictionary events.

Figure 5.6: Methods for the seamless integration into the IDE.

All of these integrations into the familiar programming environment of the devel-
opers work together to minimise the necessary task of the developers. They all
supplement the programming experience within the IDE by allowing the easy ex-
ploration of the toolkit’s functionality, and they automate reoccurring and tedious
programming tasks.

Especially the automatic code framework generator add-in4 reduces the necessary
work when programmers start with the development of an appliance. The devel-
opment of this add-in is driven by the motivation to minimise the frequent pro-
gramming tasks that occur in the starting phase of the appliance prototype devel-
opment. The add-in extension simplifies the creation of new appliance develop-

4 The term add-in instead of plug-in is used here because it is the official term for this extension
in Microsoft Visual Studio according to the Microsoft Developer Network (MSDN) documen-
tation [Microsoft Corporation, 2007d].

77

Chapter 5 Toolkit Developer Library

ment projects as it can automatically generate a basic appliance code framework.
Once the add-in started, it connects to the shared dictionary server instance and
provides a list of all attached hardware components as shown in Figure 5.7(a).
The add-in can also display the graphical interface skin of each of these compo-
nents to easily test the hardware or to view the hardware’s status.

Figure 5.7: User interface of the IDE add-in.

The creation of the basic code framework for the development of a new infor-
mation appliance works as following. First, the developer chooses the hardware
component that he/she would like to use in the new project (cf. Figure 5.7(a)).
Next, he/she can choose which event handlers (cf. Figure 5.7(b)) should be im-
plemented (e. g., for the sensor change event), and if an interface skin should be
added to the application form as well (cf. Figure 5.7(c)). Next, this hardware
can be appended to the list of used hardware components (cf. Figure 5.7(d)).
These steps can be repeated for all other needed hardware components. Once the
developer has completed the list of needed hardware, the add-in automatically
creates a code framework, whereas it automates the following tasks:

1. The add-in integrates the needed libraries to the development project.

2. For all selected hardware devices, the corresponding proxy component classes
are added to the project. All class properties (e. g., serial number) are set
accordingly.

3. The event handlers (for all of the selected events) and the callback methods
are added to the project source code.

4. If selected, the corresponding interface skin of the hardware device is added
to the application form.

5. For the integration of high-level appliance events, and for the facilitating
of the shared dictionary event architecture in general, the add-in also sup-

78

Chapter 5 Toolkit Developer Library

ports the automatic addition of shared dictionary event subscriptions to the
project. With it, developers can add subscriptions for high-level appliance
events by just selecting the entry from the shared dictionary view as shown
in Figure 5.7(e).

These steps have to be usually implemented by the developers themselves. How-
ever, as the add-in takes over these frequent programming housekeeping tasks, it
therewith minimises the barriers of implementing high-fidelity prototyping projects
(cf. Section 2.7).

Thus, this IDE extension simplifies the development in the following ways: it al-
lows the infrastructure exploration from within the IDE, it automates the integration
of hardware proxy objects and event handlers, and it provides means to access the
abstract data model in the shared dictionary. An important characteristic of these
integrations into the developer’s IDE is the fact that even though they automate
many frequent and tedious programming tasks, they do not intervene to deep into
the programming concepts or try to automate the programming of the appliance
logic themselves (cf. Section 3.1).

In summary, the seamless integration of the Shared Phidgets toolkit into the de-
velopment environment of the programmers is an important part to lower the
threshold for building high-fidelity prototypes. With it, programmers can easily
discover and learn the toolkit’s capabilities. Furthermore, the integrated add-ins
take over a part of the frequent and sometimes tedious tasks of the development
by automating parts of the code generation.

5.3 Programming with the Developer Library

Now that the previous sections of this chapter have outlined the available pro-
gramming strategies, this section explains the utilisation of the toolkit developer
library from the perspective of the prototype developer. This is explained as a
walkthrough of the programming steps that are necessary to develop a new in-
formation appliance prototype. It begins with the basic setup to create a working
infrastructure and proceeds with the basic steps to develop a new information
appliance.

1. Installation:
The Shared Phidgets toolkit has to be installed on all networked client com-
puters. The setup5 software automatically installs the required utilities and

5 The setup can be downloaded from the Shared Phidgets project website [Marquardt, 2008]

79

Chapter 5 Toolkit Developer Library

developer libraries. It also automatically integrates the toolkit into the Mi-
crosoft Visual Studio IDE.

2. Infrastructure Setup:
The Connector software has to be started on all clients that have attached
hardware devices. One of the Connector instances must be chosen to act
as the server instance; therefore, the address of the Connector software on
all other client machines must point to this IP address. All other aspects of
the hardware integration are now handled by the software autonomously.
By attaching any hardware devices to the client computers (e. g., Phidgets
hardware or graphic displays) they are automatically added to the shared
data space—ready for integrating them into custom projects by using the
toolkit API.

3. Appliance Implementation:
Developers can choose one of the variations of building an appliance frame-
work as previously explained in Subsection 5.2.1. This is important to han-
dle the network connection.

4. Integrating Sensors and Actuators:
Developers can use any of the previously introduced programming strategies
in Section 5.1 to integrate the hardware devices into their software project.
For even simpler integration of hardware, developers can utilise the Visual
Studio add-in.

5. Programming Control Structures:
Developers now need to add their custom control logic into their appliance
software code. This could be the interpretation of sensor values and the
corresponding control of actuators.

6. Compiling and Deployment:
After the compilation of the appliance software it can be started on any
of the network connected computers. The appliance software handles the
connection to the shared dictionary.

7. Testing and Debugging:
The testing of developed appliances and the debugging to find appliance
failures are important programming tasks. The Shared Phidgets toolkit pro-
vides a collection of utilities for these tasks; introduced in Chapter 6.

8. Iterations:
By iterating on the design of the first prototype, developers could now try
diverse implementation ideas. All hardware proxy objects can be easily ex-
changed and new ones can be added to the project.

80

Chapter 5 Toolkit Developer Library

By following these simple steps developers can easily build custom information
appliances. Case studies of the prototype development are explained in Chap-
ter 7.

5.4 Library Implementation and Extensibility

Similar to the runtime platform, the developer library is implemented in C#.NET.
The library provides a collection of programming components that can be used
with the .NET CLR, and is compiled as DLL assembly [Meijer and Gough, 2000].

The Shared Phidgets toolkit developer library is extensible in various ways. As
mentioned in the previous chapter, developers can easily integrate custom hard-
ware by implementing a Connector plug-in. While Section 4.4 already explained
how to implement these plug-ins, this section now explains details of the devel-
oper library implementation. This includes extensions developers can build based
on the the extensible class framework.

Figure 5.8: UML class diagram of the main components of the developer library.

The fundamental subset of the class architecture of the developer library is il-
lustrated in Figure 5.8. The BaseComponent is the abstract base class for all im-
plemented concrete proxy components for the hardware access. This abstract
class derives from the Component class of the .NET component model, so that it
can be used as component for the .NET form based development, for instance
in the visual designer of Visual Studio [Microsoft Corporation, 2007d]). The

81

Chapter 5 Toolkit Developer Library

BaseComponent implements the basic set of methods and properties of the proxy
components. Therefore, this base class minimises the effort of implementing the
concrete proxy objects. The functionality of the BaseComponent comprises the
following aspects:

◦ The class handles the connection to the SharedDictionary of the .NET-
WORKING toolkit, and instantiates the Subscriptions for events from the
shared data space. It requests the SharedDictionary instance from the
ConnectionSingleton as this is the default connection for all components.
This dictionary instance is also accessed from the Appliance base class, the
ConnectionManager or the ConnectionManagerSkin. Therewith, a single
connection is shared by all the objects instances by default. If developers
wish to use multiple network connections though, they can create multiple
instances of the SharedDictionary connection and assign these connections
to the corresponding property of the BaseComponent.

◦ The BaseComponent provides common properties of all implemented proxy
components: the DeviceDescription with the hardware type identifier, the
serial number of the hardware as well as access to the metadata entries.

◦ Finally, it provides a basic set of events and event handler definitions. These
are for instance the Attach or Detach events that occur when the hardware
is attached or detached. Another example is the SerialChanged event that
is raised when the serial number of the proxy is changed and it therefore
controls a different hardware.

Derived from the BaseComponent, the ConcreteComponent classes are the imple-
mentations of the specific proxy objects for the hardware devices (as introduced
earlier in Subsection 5.1.2 of this chapter). For each of the available hardware de-
vices a separate class implementation implements the specific hardware attributes
(e. g., the current displayed Image property of the GraphicLCD or the Tag event
of the RFID reader). To respond to the incoming notifications of the changes in
the hardware’s abstract data model (e. g., if the Connector plug-in of the hard-
ware publishes updated data values of a sensor), the concrete proxy components
override the abstract method subscription_Notified. In this method the de-
velopers can implement the code that handles these shared dictionary events
and can in turn raise events of the implemented proxy component to notify in-
terested subscribers (e. g., the SensorChange event of the InterfaceKit that is
raised if the value of one of the analog sensors is changed). To furthermore
simplify the development, the toolkit provides a set of helper classes in the Grou-

pLab.SharedPhidgets.Utility namespace that are for instance utilised to parse
dictionary path expressions, or to convert sensor values.

82

Chapter 5 Toolkit Developer Library

For the implementations of the proxy component events, developers can choose
between two implementation strategies: synchronous and asynchronous event no-
tifications. The synchronous events are thread-safe and therefore allow the direct
access to GUI elements. Admittedly, they decrease the program execution per-
formance, because for all raised events the notification method invokes the event
handler on the same thread as the target class. They ensure, however, that de-
velopers can access all class members from within the event handler methods
without the need of implementing the thread-safe access to these members them-
selves. The asynchronous notifications on the other hand are executed on a sep-
arate thread, which results in higher performance, but they are not thread-safe.
All event implementations of the Shared Phidgets toolkit are synchronous by de-
fault, for the reason that developers do not have to care about the thread-safe
implementation by themselves (with the cost of a slightly lower performance).
Nonetheless, for all events with frequent updates of the notifications (e. g., sensor
values, accelerometer changes), a second asynchronous event is implemented.
This lets developers choose to use the asynchronous event notifications if they
implement the thread-safe handler code by themselves.

The interface skins for the proxy components (cf. Subsection 5.1.3) are derived
from the .NET UserControl base class that provides the basic container for en-
capsulated GUI components (illustrated in the lower part of Figure 5.8). Each
interface skin implements a wrapper around one of the proxy components, and
implements a graphical interface to monitor and control the hardware’s proper-
ties. Interface skins implement the IComponentSkin interface that defines the
access to the BaseComponent object that is wrapped by the skin. As mentioned
earlier, Appendix B provides a complete list of the implemented .NET components
and Appendix C a detailed overview of the available interface skins.

Overall, developers can extend the core functionality and implemented class com-
ponents of the toolkit by deriving from the base classes and using the utility classes
and methods provided by the toolkit. Further details about the development and
extensibility can be found in the tutorials, the documented toolkit source code,
and the development examples [Marquardt, 2008].

5.5 Chapter Summary

This chapter gave an overview of the Shared Phidgets developer library and the
programming strategies that developers can use to implement distributed physical
user interfaces. One the one hand, the hardware proxy objects, graphical skins,
and the seamless IDE integration simplify the development for the average pro-
grammers that are unfamiliar with physical user interfaces. On the other hand,

83

Chapter 5 Toolkit Developer Library

the direct access to the shared data model, high-level events, and the extensibility
of the class framework addresses the demands of expert developers.

As the handling of distributed hardware infrastructures can be troublesome, the
next chapter introduces a collection of advanced utilities to assist developers with
the monitoring of the infrastructure, simulating of hardware, and debugging of
appliances.

84

CHAPTER 6

Development Utilities

The developer library introduced in the last chapter and the runtime platform de-
scribed in Chapter 4 are fundamental components of the Shared Phidgets architec-
ture. Nonetheless, the development of distributed information appliances raises
further issues that the developers have to cope with, as “a significant difficulty in
debugging is the limited visibility of application behavior” [Klemmer et al., 2004].
Therefore, the toolkit introduces utilities for the monitoring, controlling, and sim-
ulating of the distributed hardware; as well as for the management, reconfigu-
ration, and debugging of developed information appliances. This chapter at first
explains the concept of these high-level utilities, before the implementation de-
tails are explained at the end of the chapter.

6.1 Monitoring and Controlling Utilities

The toolkit utilities are useful for testing and debugging, and help the developers
to observe the developed information appliances as well as all occurred events at
runtime. With their discussion of the Papier-Mâché toolkit, Klemmer et al. [2004]
stressed the importance of providing such feedback to users and developers: “Pro-
viding visual feedback about the system’s perception of tracked objects helped users
compensate for tracking errors.” [Klemmer et al., 2004]. As in the previously
mentioned visualisation (cf. Subsection 3.4.8) of the Event Heap infrastructure
[Morris, 2004], these tools can provide valuable feedback of the system events
to the developers. To facilitate the handling of the distributed infrastructure the
following tasks should be supported by the toolkit utilities:

85

Chapter 6 Development Utilities

◦ Observing of the shared data model and the event forwarding between the
networked components.

◦ Monitoring of the distributed infrastructure of hardware devices, as well as
controlling the properties of the distributed hardware.

◦ Exploring of the specific hardware properties and capabilities. This can help
developers to understand the hardware device’s capabilities and limitations,
and this in turn leads to decisions about which hardware is suitable for the
desired functionality of the appliance.

◦ Monitoring and reconfiguration of the developed appliances. This can facil-
itate the testing and debugging of appliances, and the configuration adjust-
ment to a changed hardware infrastructure.

Three fundamental access layers to the hardware and appliances have been intro-
duced in the two previous chapters. First, it is possible to address the hardware by
means of the abstract model in the shared data space (cf. Figure 6.1(a)). Second,
the proxy objects of the developer library can be used to access the hardware API,
with class properties, methods, and events (cf. Figure 6.1(b)). Third, the shared
data model of all developed appliances allows the access to the structure of the
composed information appliances (cf. Figure 6.1(c)). The developed utilities of
the Shared Phidgets toolkit allow the exploration and access to these three ab-
straction layers. Subsequently, the specific utilities and their integration into the
development process are described in detail.

Figure 6.1: Three access levels to the shared infrastructure.

86

Chapter 6 Development Utilities

6.1.1 Network Level

At the network level (cf. Figure 6.1(a)) developers can monitor the hierarchy
of entries in the shared data space as illustrated in Figure 6.2(a). All entries
of the shared data space are listed with their hierarchy path expression, their
current value, and the data type of the value. This allows the observation of
all occurred events (e. g., sensors changing their value). With this view to the
shared dictionary developers are able to access the hardware data model directly.
This represents the most abstract view to the infrastructure of network connected
components and can be a helpful utility for experienced developers. For instance,
this view allows the modification of all metadata entries of a hardware device, the
modification of entries in the data model of a hardware device (e. g., for testing),
and the addition or deletion of entries.

To facilitate the utilisation of this abstract view the following techniques are im-
plemented. The list of entries can be sorted by path expression, values, or data
type. Developers can easily edit the dictionary entries (with all supported data
types), add new entries, or delete existing ones. It is also possible to search for all
entries that match one or more key words. Once the key words in the search field
are entered, the view changes automatically to display all matching results (search
starts with the first letter that is entered). Multiple search terms are concatenated
with the AND conjunction. The search automatically searches for matches in the
path expression, the value, and the data type. This allows, for instance, finding all
boolean metadata entries by entering the keywords “metadata boolean”, all dig-
ital inputs that are currently activated with “input true”, or the current location
entries of all RFID readers with “rfid location”.

In summary, the access to the network level allows the direct view to the shared
data model, and is the most powerful utility. The handling of the shared data
model, however, requires advanced knowledge of the path hierarchy and the rep-
resented data model (cf. Subsection 5.1.1). Moreover, incorrect changes of the
entries in the data structure might cause unpredictable behaviour of the infras-
tructure, for instance hardware devices that do not work correctly. Therefore, the
following utilities allow a high-level view of the infrastructure.

6.1.2 Hardware Level

With the view to the hardware level of all distributed devices (cf. Figure 6.1(b)),
developers can easily observe and control all hardware devices that are connected
to any of the network machines. This helps viewing the current hardware sta-
tus, initialising components (e. g., reset the position of a servo motor), and ex-

87

Chapter 6 Development Utilities

(a) Network level view. (b) Hardware level view.

(c) Appliance level view. (d) Geographical visualisation view.

Figure 6.2: Monitoring and controlling utilities.

ploring the hardware capabilities (e. g., to view the range of values a connected
motion sensor triggers). Once a hardware device is selected the corresponding
interface skin (cf. Subsection 5.1.3) is created and allows the view of all hard-
ware properties and occurred events as well as the modification of the properties.

88

Chapter 6 Development Utilities

Figure 6.2(b) illustrates the view to an accelerometer and visualises the current
positions of the accelerometer axis.

As it can be difficult to identify and to find the hardware a developer needs to
control, the following options are available to explore all attached hardware de-
vices:

◦ Type List:
All attached hardware components are shown in a list view with information
about the hardware device type, the serial number, and several metadata
entries (e. g., location, owner).

◦ Metadata:
The user can easily browse all devices based on the metadata entries in the
shared dictionary. Users can also search for particular metadata entries, and
see a list of all devices that match the search query.

◦ Location:
All devices can be explored based on their location. This technique is de-
scribed in more detail in Section 6.2.

◦ Manual Input:
The user can manually enter the type and the serial number to identify the
hardware.

◦ Automatic Identification:
RFID tags attached to the hardware are used to identify the device type and
serial number. Thus, users can identify all hardware devices by just placing
them near an RFID reader.

The latter mentioned exploration technique is the easiest method to identify a
hardware device. By attaching unique RFID tags to each of the hardware compo-
nents, and by associating this RFID tag to the hardware component’s dictionary
data model, all components can be easily identified by bringing an RFID reader
near them. These associations of the physical components with their digital repre-
sentation are inspired by Want et al. [1999] research about adding identification
tags to objects in the environment to facilitate the interaction with these objects.
Therewith, the RFID tagged hardware can be more easily identified as the user
does not need to know the device type or serial number.

In summary, the access to the hardware level allows the observation and control
of connected devices via the graphical interface skins. By using the integrated
search methods the needed hardware can be easily found and the applied RFID
tagging of the hardware moreover simplifies the hardware exploration.

89

Chapter 6 Development Utilities

6.1.3 Appliance Level

As the hardware components can be combined to logical units (the appliances
introduced in Subsection 5.2.1), the utility access to the appliance level (cf. Fig-
ure 6.1(c)) allows the exploration of all available appliances. Here, the addressed
hardware components can be viewed as shown in Figure 6.2(c). This control view
also allows changes of the mapping between hardware and appliances. That is im-
portant to let users modify appliances at runtime and adapt appliances to changes
of the infrastructure like different attached hardware devices.

Furthermore, all events of the used hardware and the appliance itself can be
viewed: these are all incoming sensor events, outgoing actuator control events, and
the high-level events of the appliance. This helps to monitor the internal process-
ing of an appliance. Nonetheless, it is still difficult for developers to monitor
an appliance with this event view, which motivated the development of the ad-
vanced spatial visualisation of the overall infrastructure (cf. Figure 6.2(d)) that is
introduced in the following section.

6.2 Revealing the Invisible: Advanced Spatial Visuali-
sation

The distribution of the hardware sensors and actuators at remote located spaces
(e. g., different rooms or buildings) makes it difficult for developers to observe
and control the distributed hardware devices. Although the three earlier intro-
duced utilities allow the control of separated aspects of the infrastructure (i. e.,
shared dictionary, hardware devices, appliances), they do not provide an easy to
use interface to observe appliances, get insights into the transmitted events, or
view the relations between the distributed components of the appliances. There-
fore, the next section of this chapter introduces an advanced visualisation that
combines the functionality of the previous introduced utilities with a visualisation
of the appliance networks in their geographical context.

6.2.1 Overview

Overview visualisations of the assemblies of hardware devices to appliances en-
able the developer to easily monitor the incoming and outgoing connections of an
appliance. Furthermore, it allows changing the mapping of the hardware devices

90

Chapter 6 Development Utilities

(a) Orbital browser user
interface [Ducheneaut
et al., 2006].

(b) Composing UI of the
Equator Component
Toolkit [Egglestone et al.,
2006].

(c) SenseWeb map
visualisation [Kasal
et al., 2007].

Figure 6.3: Visualisations of distributed hardware devices.

to specific appliances. For instance, if an appliance is observing the activity in sev-
eral rooms by the use of motion sensors, it is possible to change these addressed
sensors at runtime. This technique is previously used in graphical programming
environments of ubiquitous computing applications, as for instance in the editor
user interfaces of the iStuff mobile project by Ballagas et al. [2007], the Collab-
orationBus project [Gross and Marquardt, 2007]), the Orbital Browser shown in
Figure 6.3(a) [Ducheneaut et al., 2006], and the ECT user interface illustrated in
Figure 6.3(b) [Egglestone et al., 2006]). These visualisations reveal the internals
of the appliances and allow the control of the data flow between the incoming
sensor values and the outgoing control values. Usually, these utilities integrate
a graphical programming environment where end users can program and config-
ure information appliances. Although all of these systems address end users, the
principles of these visualisations can support developers as well.

Therefore, the advanced geographical visualisation of the Shared Phidgets toolkit
provides developers of distributed physical interfaces similar visualisations of the
configuration and internal data flow of the developed appliances. This data flow
includes all events that are transmitted between the assembled components of the
appliance. The visualisation combines the monitoring view of the appliances and
the hardware with the visualisation of the geographical context. Similar to the
geographical visualisations that have been previously utilised for the visualisation
of large scale sensor networks (e. g., the SenseWeb visualisation in Figure 6.3(c)
[Santanche et al., 2006; Kasal et al., 2007]) these geographical visualisations can
also support the development of distributed physical interfaces. The following
list gives an overview and the rationale for the integration of the previously men-

91

Chapter 6 Development Utilities

tioned aspects into the advanced geographical visualisation that is illustrated in
Figure 6.4:

◦ Geographic Context:
The geographic context (e. g., rooms, buildings, cities) is important for de-
velopers as they can analyse the distributed infrastructure based on the
physical location of the components.

◦ Metadata and Regions:
With defining regions and applying metadata developers can group hard-
ware devices, and add high-level context information to the environment
(e. g., private areas in buildings, where sensors are inactive or hidden). De-
veloped appliances can utilise these metadata information (as introduced
with the example case study in Subsection 7.1.1), which simplifies the de-
velopment, and allows the dynamic runtime configuration of appliances.

◦ Hardware Devices:
This layer visualises all sensors and actuators at their current location. There-
with, it is easier to find hardware devices that are nearby located to others
and to find sensors at a specific location.

◦ Appliances and Connections:
The addressed hardware components of an appliance are visualised as a
network of connections. At a glance, the connections of appliances can be
observed. It is important that the visualised connections represent the logic
control network, not the underlying physical network connections.

◦ Events and Data Flow:
The visualisation of occurred events can be beneficial for the debugging
of appliances. All incoming events of sensors, outgoing control events for
actuators, transmission of metadata, and generation of high-level events are
visualised as animations on top of the drawn connections of the previous
layers. For instance, developers can verify that a hardware component is
working and transmitting events or that an appliance is sending actuator
control commands in response to incoming sensor values.

◦ Detailed View and Control:
Finally, detailed views and control windows for the visualised components
(hardware, appliances) are available if required.

The integration of these mentioned visualisation layers follow the Visual Informa-
tion Seeking Mantra by Ben Shneiderman: “Overview first, zoom and filter, then
details-on-demand” [Shneiderman, 1996]. The overview and context in the visual-
isation is provided by the geographical map layer. Users can navigate and zoom in
and select the hardware components and appliances they are interested in (filter).

92

Chapter 6 Development Utilities

Figure 6.4: Layer architecture of the spatial infrastructure visualisation.

Finally, they can request details-on-demand about the hardware devices and appli-
ances, with the floating window panels that can provide the interface skin, data
plots, shared dictionary events, or metadata views. The next section describes the
user interface of this visualisation tool.

6.2.2 Using the Infrastructure Visualisation

This section briefly describes the user interaction with the Shared Phidgets tool-
kit infrastructure visualisation. When the utility is started, the geographical map
view is shown, and the developer can navigate and zoom in to display a par-
ticular region. Hardware devices are visualised at their spatial location, as with
the orange markers in Figure 6.5. If the location of a hardware device is not
specified (i. e., it was not automatically added by an GPS device or with RFID
identification) the developer can manually specify the location on the map. For
status information about the hardware, the developer can click on the hardware
marker on the map to see the status panel of this device that is shown in Fig-
ure 6.5(a). Here, the developer can activate the detailed views of the hardware
device’s properties (previously described in Subsection 5.1.3): the interface skins
as shown in Figure 6.5(b), the view of the hardware’s abstract data model entries
that can be seen in Figure 6.5(c), and the graph plot views of sensor values that is
visualised in Figure 6.5(d). These information windows are floating panels on top
of the map, and they can be collapsed in order to not occlude parts of the map (cf.

93

Chapter 6 Development Utilities

Figure 6.5: User interface of the spatial infrastructure visualisation.

94

Chapter 6 Development Utilities

Figure 6.5(e)). Their position is linked to the current map location (this means
that they automatically follow this map location when the map is moved). The
preference of the location can be, however, set to a fixed screen location (e. g., to
retain the detail views of a sensor on the screen while the map is moved).

Appliances are visualised as the network of connected hardware components, as
shown in Figure 6.5(f). Sensor events and actuator control events are displayed as
animations on top of the drawn connections, so that developers can easily recog-
nise these incoming and outgoing events. The detailed view of appliances (shown
in Figure 6.5(g)) is available in the map control window (cf. Figure 6.5(h)). This
appliance view is similar to that introduced in Subsection 6.1.3.

With the configuration window shown in Figure 6.5(h) the developer has ac-
cess to detailed information about all hardware devices, appliances, map options,
and metadata regions. The latter are the geographical regions (the blue areas
in Figure 6.5(i)) that a developer can draw on the map and specify metadata
information for these regions (e. g., context information about this area). The
metadata entries can then be assigned to all hardware devices that are located
inside of the area covered by the region. Therewith, this is a helpful functionality
to apply metadata tags to groups of devices and to modify the metadata entries
of hardware devices depending on their geographical location.

In summary, developers can use the spatial visualisation utility to monitor and
control hardware in place and get detailed information about the internals of the
developed appliances. To further support the debugging and testing the next
section introduces the simulation utilities of the toolkit.

6.3 Testing with Simulated Hardware

Testing of the developed physical interfaces is an integral part of the development
process [Klemmer et al., 2004; Dow et al., 2005; Dey, 2000; Sohn and Dey, 2003].
In this section the integration of simulation interfaces into the toolkits architecture
is described. This facilitated the process of testing and debugging appliances
during development.

6.3.1 Wizard of Oz Simulations

Wizard of Oz (WOz) simulations describe a technique where developers can sim-
ulate the input events for developed applications. Therewith, the testing of appli-

95

Chapter 6 Development Utilities

cations is possible even if the current input device (e. g., sensor hardware, input
controller) is not available [Li et al., 2007].

A common application of the WOz method is the simulation of a part of the appli-
cation that is not yet implemented; “from simulating the entire system to simulating
sensors” [Dow et al., 2005]. Dow et al. [2005] describe the application of WOz
simulations throughout the prototyping cycle. Their developed DART system il-
lustrates the integration of WOz tools into an event-based architecture. With these
controls the developers can easily simulate the occurrence of events by using con-
trols of a graphical user interface (that is automatically generated based on the
event types). Klemmer et al. [2004] also added the WOz functionality to their
Papier-Mâché toolkit. With these WOz controls developers can simulate events
(in this case, events from computer vision or an RFID reader) for the input of the
TUI prototyping toolkit. The local Phidgets toolkit [Greenberg and Fitchett, 2001]
also included a simulation mode; here, the simulation control is activated in the
case that the corresponding “real” hardware is not available.

In summary, the WOz simulations support the prototyping process in the following
ways. First, they can simulate hardware that is not available or remotely located
[Dow et al., 2005]. Second, it is possible to test applications and to reproduce
scenarios during the development and debugging [Klemmer et al., 2004]. Third,
they can even simulate applications and high-level events that are not yet imple-
mented [Dey, 2000]. The following subsection describes the integration of these
techniques into the Shared Phidgets toolkit.

6.3.2 Toolkit Simulation Utilities

To support the testing and debugging of distributed information appliances with
the Shared Phidgets toolkit, the toolkit includes simulation utilities and WOz sim-
ulations as well. These simulations have the following characteristics. First, all
simulations are built on top of the network data model. Therewith, they can pro-
vide simulations based on the hardware data model in a way that they simulate
the entries of this hardware in the shared dictionary. This means that they add
all corresponding key/value pairs to the dictionary and respond to the changes of
these entries similar to the real hardware component. Second, the WOz simula-
tions provide a graphical user interface that provides user controls to simulate the
hardware behaviour (e. g., sensor changes). Third, to allow the testing of applica-
tions that utilise larger number of sensors, the utilities provide a method to record
and playback a series of events (similar to a macro recorder for GUI software).
This utility can record any event that occurs in the shared data model and saves
a series of events with their according time intervals.

96

Chapter 6 Development Utilities

Figure 6.6: Simulating hardware with Wizard of Oz interfaces.

The following simulation functionality is available in the Shared Phidgets tool-
kit:

◦ Wizard of Oz Hardware Simulations:
The developers can create hardware simulations that provide similar at-
tributes and events like the physical hardware components. For instance,
the developer can create simulated RFID readers and set the received ID
tags of the reader. All these simulations are managed by the Simulation-

Manager utility (cf. Figure 6.6). They provide a GUI control for interac-
tion (e. g., simulate the acceleration changes of an accelerometer in Fig-
ure 6.6(a) and a graphic LC display in Figure 6.6(b)). Each simulated hard-
ware interface provides controls to set the hardware as attached/detached
(cf. Figure 6.6(c)) and to specify the serial number (cf. Figure 6.6(d)).
The SimulationManager contains all the simulation GUI controls so that the
developers can easily add simulated devices (cf. Figure 6.6(e)).

◦ Recording and Playback of Network/Hardware Events:
When developers prototype applications that involve many distributed sen-
sors, it can be difficult to test the developed applications even with the
graphical Wizard of Oz interfaces. For this case, the toolkit provides an easy
to use recording and playback utility, the SimulationRecorder illustrated in
Figure 6.7. This utility can record events that occur in the shared dictionary
(e. g., sensor events, actuator changes) and playback this sequence of events
later for testing. For instance, the developer can record the events of various
motion, light, and distance sensors, and playback these events later while
testing the developed application to verify the application’s reactions.

97

Chapter 6 Development Utilities

Figure 6.7: Recording and reproducing hardware events.

The user interface of the SimulationRecorder provides controls to record
and playback a simulation recording (cf. Figure 6.7(a)). It also includes a
timer for the recorded time and total number of events (cf. Figure 6.7(b)).
Options (cf. Figure 6.7(c)) are available to specify the type of the events
that are recorded (e. g., only network events of a specific data type). Once
a simulation is recorded the GUI displays a list of all recorded devices (cf.
Figure 6.7(d)) with the option to change the serial number of the devices.
Furthermore, a table view provides a list of all recorded events (cf. Fig-
ure 6.7(e)) to review the recording and apply changes to the dataset.

With these utilities developers are able to easily simulate hardware devices that
are currently not available or they can record test cases of a series of hardware
events, and recall them later when testing and debugging applications.

6.4 Scenario

The following scenario illustrates the utilisation of the previously introduced de-
velopment utilities. Chris develops an appliance that visualises the activity of a
working team in distributed office rooms to provide presence awareness between
the remote located group members. The appliance avoids using cameras because
of privacy considerations. Instead it uses motion and IR distance sensors to mea-
sure the activity in the rooms.

98

Chapter 6 Development Utilities

When beginning the project, Chris starts the infrastructure visualisation of the
Explorer software and immediately gets an overview of the available distributed
sensors in the offices. He selects the interesting sensors and chooses the graph
plot views to monitor the sensor values. This helps him to implement the in-
terpretation logic of the sensor values in his appliance code as the graph plots
show the changes of the sensors over time. The observation of the sensors and
the view of their location in the environment also helps Chris to decide which
sensors to include. He decides to use metadata entries to tag all sensors his ap-
plication should observe. These metadata entries are easily added to the sensors
with the list view of the shared data model and the developed appliance subscribes
to receive notifications of these metadata entries.

When the implementation is finished, Chris starts the compiled appliance control
software. He can easily monitor the appliance with the infrastructure visualisation
as a network between all utilised hardware components. As no others are in the
offices at that time Chris starts the SimulationManager to quickly simulate events
of the motion and distance sensors in the WOz manner. During this simulation
the sensor events are shown on the map view. With the interface skin views of the
controlled actuator displays, Chris verifies that his developed appliance is working
correctly.

Although this is only a simple scenario, it demonstrates how the implemented
utilities can support the development process at various stages: finding sensors
and actuators when beginning with the development, monitoring concrete sensor
values, easily integrating metadata information, observing appliances, and testing
with simulated sensors. The remainder of the chapter now explains the imple-
mentation of these utilities.

6.5 Implementation

This section briefly describes aspects of the utility implementation1. All utilities of
the Shared Phidgets toolkit are built in C#.NET using the developer library that
was introduced in Chapter 5. For the implementation they utilise the software
building blocks of the developer library (e. g., shared dictionary access, appliance
observer, hardware proxy objects, interface skins).

1 Details of the implementation can be found in the developer documentation and the source
code; available on the thesis project DVD or as download on the Shared Phidgets project
website [Marquardt, 2008]

99

Chapter 6 Development Utilities

Monitoring and Controlling Utilities

The core functionality of the monitoring and controlling utilities has been imple-
mented as separate .NET UserControls. Therefore, these controls can be easily
added to custom software projects. This includes the following controls. First,
the DictionaryManager provides a list of dictionary entries, search functionality,
and commands to add, edit, or remove dictionary entries. Second, the DeviceM-

anager implements the view of the available hardware devices. Finally, the Ap-

plianceManager implements the interface for monitoring and reconfiguration of
appliances. The utility functionality is compiled as the Explorer application, and
also includes the geographical infrastructure visualisation.

Infrastructure Visualisation

The MapExplorer application is the implementation of the spatial infrastructure
visualisation of the Shared Phidgets toolkit. It includes the integration of the Mi-
crosoft Virtual Earth web service [Microsoft Corporation, 2007c]. Virtual Earth
provides satellite imagery and street layout information. Moreover it allows the
integration of custom data and information layers with the access to the API of
the Virtual Earth SDK [Microsoft Corporation, 2007a]. The Virtual Earth web ser-
vice is integrated into the C# application with a web browser control that opens
an HTML/JavaScript website. The implemented JavaScript code acts as a bridge
between the C# application and the Virtual Earth web service [Microsoft Cor-
poration, 2007b]. This implementation allows the usage of all components and
interface skins implemented in the Shared Phidgets developer library (including
all custom controls created by developers), and the integration of these controls
as the floating observer and control windows into the application. Therefore, the
visualisation tool utilises the Virtual Earth web service from within C# but is not
implemented as web service itself.

As the default resolution of the Virtual Earth satellite images is only around two
meters per pixel, the Map Cruncher utility [Microsoft Research, 2007] is used to
create high resolution overlay maps. This tool calculates an overlay map file based
on specified coordinate marker points on custom map images that define the ab-
solute location of the custom map in relation to the Virtual Earth map layer. It
then generates a layer description XML file that can be integrated into the ap-
plication from within the JavaScript code. Currently, a predefined set of custom
layers is added to the visualisation; however, a dynamic loading method of the
layer description files could be added in a future release of the toolkit.

The implementation of the spatial visualisation is illustrated in Figure 6.8. The
described Virtual Earth maps and the additional geographic layers (created with
the Map Cruncher tool) are the base layers of the visualisation. Additional layers

100

Chapter 6 Development Utilities

Figure 6.8: Implementation of the spatial infrastructure visualisation.

are the metadata regions and the hardware components. To visualise the appli-
ance networks, the utility monitors the model of the appliances in the shared data
space (by using the ApplianceObserver) and draws connections of all hardware
components to the appliance location. If the appliance has no specified location,
it is automatically positioned in the centre of all utilised hardware components.
The utility also subscribes for all events of the sensors and actuators, in order that
all incoming and outgoing events can be visualised.

Simulations

The WOz simulation interfaces implement the user controls of simulated hardware
devices. They are built as .NET UserControls and implement the ISimulation

interface. The SimulationBaseComponent class provides a wrapper for the access
to the shared dictionary. This class has a set of methods to easily add the entries of
the simulated hardware to the shared dictionary and to receive notifications when
values of the simulated hardware data model have changed. Five reference im-
plementations for a WOz simulation interface have been implemented: the Simu-

lationAccelerometer, SimulationGraphicLCD, SimulationInterfaceKit, Sim-
ulationGSM, and SimulationRFID. Each of these classes includes a set of user
controls that visualise the status of the simulated device and allow changes of the
simulated device. For instance, slider controllers are added to the SimulationAc-

101

Chapter 6 Development Utilities

celerometer to allow the simulated change of the current axis positions; or the
SimulationRFID interface allows drag and drop selection of the simulated detec-
tion of RFID tags. For the development of custom WOz interfaces, developers can
use the code framework of one of the five reference implementations as a starting
point.

The SimulationRecorder implements the functionality to record sensor and ac-
tuator events from the infrastructure. It uses subscriptions for shared dictionary
events to store these entries in a hashtable data structure. This data structure
can be serialised/deserialised to save/load the event collection to/from the local
computer.

6.6 Chapter Summary

This chapter introduced the collection of utilities that facilitate monitoring and
controlling of the distributed hardware, as well as the testing and debugging of
developed appliances. Furthermore, an advanced visualisation utility provides
deeper insights into the interconnections between all distributed hardware de-
vices and the appliances. Finally, the integrated simulation utilities allow the
Wizard of Oz simulation of hardware, as well as the recording and playback of
event series for testing and debugging. The next chapter introduces example ap-
pliances that use the runtime platform, are implemented by means of the developer
library, and are monitored and tested with the utilities introduced in this chap-
ter.

102

CHAPTER 7

Case Studies and Discussion

In this chapter, the applicability of the toolkit for the prototyping of distributed
physical interfaces is evaluated. The example case studies illustrate how develop-
ers can use the toolkit for the rapid prototyping of user interfaces involving vari-
ous distributed sensors and actuators. For each of the case studies the important
aspects of the implementation are explained. Thereafter, the implementation and
limitations of the toolkit are discussed. The chapter concludes with a summary.

7.1 Appliance Case Studies

This chapter begins with a discussion of three case study implementations that
illustrate the applicability of the toolkit. Previous toolkits in the related work
have been typically evaluated by the spectrum of prototype systems they sup-
port, as well as their support for an easy reimplementation of interactive systems
from the literature [Klemmer et al., 2004; Greenberg and Fitchett, 2001; Ballagas
et al., 2003, 2007]. Therefore, the appliance case studies address various ubiqui-
tous computing scenarios, and partially reimplement ideas of systems that were
introduced earlier in Section 2.6.

7.1.1 Location-based Messaging

The following prototype implements a system that allows users to send messages
to displays that are distributed at various locations. It integrates ideas and con-
cepts of previous research projects, like the situated displays of HomeNote [Sellen
et al., 2006], the Sticky Spots system [Elliot et al., 2007], and the Gate Reminder

103

Chapter 7 Case Studies and Discussion

[Kim et al., 2004]. The motivation behind this example is to illustrate the rapid
prototyping of such a location-based messaging system, and to highlight possible
extensions of the first prototype.

Implementation

The prototype1 implements the following functionality: users are able to send
messages to situated displays from their mobile phones by using text messages, as
illustrated in Figure 7.1(a). Alternatively they can use a graphical software front
end (cf. Figure 7.1(b)) to write or draw messages and choose a display from a list
to send the message to (similar as in the Sticky Spots project [Elliot et al., 2007]).
The message displays are implemented with the wireless graphic LCD, and can
be easily distributed across multiple rooms in the home; for instance near the
front door as illustrated in Figure 7.1(c). The software organises the routing of
messages to the graphic LC displays. Thus, this system implements a first iteration
of a prototype that allows situated messaging.

(a) Sending messages
from phones.

(b) Writing messages. (c) Situated messaging display.

Figure 7.1: Location-based messaging appliance.

In the following, three implementation aspects of the system are briefly described:
the dynamic integration of distributed displays, the handling of incoming text mes-
sages, and the forwarding of messages to displays. The system dynamically inte-
grates new connected graphic LC displays into the application by using the Attach

event of the DeviceManager. The event handler method checks for the correct
device type (line 3 in Figure 7.2) and the specification of two metadata tags: ap-
pliance and location (lines 6 and 7 in Figure 7.2). The appliance metadata entry
tags all hardware devices that are assigned to this appliance, while the location
metadata entries specify the location of the display (and these names are added to

1 Development project: LocationBasedMessaging [Marquardt, 2008].

104

Chapter 7 Case Studies and Discussion

a list of the appliance user interface). Next, the incoming text messages from mo-
bile phones are handled via an event callback method of the ReceivedSms event of
the GSMGateway (lines 13 to 19 in Figure 7.2). In the event handler, the first part
of the messages is interpreted as the destination location for the message. The
remaining part of the messages is the text for the display. Finally, the SendMes-

sage method (lines 21 to 24 in Figure 7.2) forwards messages to the displays
by changing the according entry of the abstract data model of the display in the
shared dictionary.

1 private void manager_Attach(object sender , DeviceManagerEventArgs e) {

2 // Check device type for attached graphic LC displays.

3 if (e.DeviceDescription.Type == Constants.DEVICE_GRAPHICLCD) {

4 // If the location property of the display is set , add the display

5 // to the device list.

6 if (e.DeviceDescription.MatchMetadata("appliance", "stickyspots") &&

7 e.DeviceDescription.ContainsMetadataKey("location"))

8 this.listViewLocations.Items.Add(new ListViewItem(new string [] {

9 e.DeviceDescription.GetMetadata("location"),

10 e.DeviceDescription.SerialNumber }));

11 } }

12

13 private void gsmGateway_ReceivedSms(object sender , SmsEventArgs e) {

14 // Event handler for incoming message from a mobile phone

15 string [] elements = e.Message.Split(’:’);

16 if (elements.Length > 1) {

17 this.SendMessage(elements [0]. Trim(),

18 e.Message.Substring(elements [0]. Length + 1).Trim());

19 } }

20

21 private void SendMessage(string location , string message) {

22 [...]

23 // Set the text message of the display

24 this.sharedDictionary[devicepath + "/set/text"] = message;

25 }

Figure 7.2: Source code for location-based messaging appliance.

Discussion

Although this prototype system does not implement all the functionality of the
mentioned location-based messaging systems in the related work, it demonstrates
that a working prototype can be built with the Shared Phidgets toolkit by pro-
gramming only 26 lines of code for the implementation of the application logic.

The software implementation of the prototype illustrates how event handlers
(e. g., to get notifications of attached display devices or incoming SMS text mes-
sages) and metadata information (e. g., for assigning devices to the appliance, and
for location information) can be efficiently applied. The metadata entries allow
the dynamic integration of additional displays at runtime. It is only necessary to

105

Chapter 7 Case Studies and Discussion

attach a new display to one of the client computers, and to add the two metadata
entries location and appliance, for instance by using the utilities of the toolkit (cf.
Section 6.1).

The prototype can be easily extended with additional functionality. For instance,
the system could support sending private messages for a particular person to the
situated displays (by using RFID tags for identification). It could also implement
the reminder functionality of the Gate Reminder system [Kim et al., 2004], by
adding additional sensors to gather context information (e. g., people moving by,
or standing in front of the display).

In summary, this prototype illustrated the application of the toolkit to build a dis-
tributed information appliance. A few aspects of the software implementation
highlighted the easy to use API with proxy objects for the addressed hardware.
The rapid prototyping technique of the Shared Phidgets toolkit allows developers
to focus on the design of the appliance, instead of dealing with low level imple-
mentation issues.

7.1.2 Tangible Digital Media

The second example case study explores different ways of the user’s interaction
with digital media. The intention of the developed appliance is to allow the
coupling of objects in our everyday environment—the physical world—with in-
formation from the digital world [Ishii and Ullmer, 1997]. With the developed
prototype users can browse through collections of digital photos with a small tan-
gible controller and assign these photos to digital photo frames distributed in the
environment. Therefore, this prototype allows the tangible exploration of digital
information in the user’s everyday environment [Fitzmaurice, 1993].

Implementation

The developed appliance2 consists of a hardware unit with a graphic LC display,
an RFID reader, and an accelerometer (illustrated in Figure 7.3(a)). Furthermore
multiple additional graphic LC displays work as distributed digital image frames
as in Figure 7.3(b). To support the development of the appliance, interface skins
for all these hardware devices are added to the software-side user interface as
illustrated in Figure 7.4(a).

2 Development project: PhotoTimeline [Marquardt, 2008].

106

Chapter 7 Case Studies and Discussion

(a) Assembly of the information appliance. (b) Appliance assigning photos to digital
picture frames.

(c) Navigate through photo collections. (d) Distribute media with simple gestures.

Figure 7.3: Tangible digital media appliance.

When browsing the collection of digital photos, the controller allows users to
move forward or backwards in time by just tilting the small screen to the left
or the right side (cf. Figure 7.3(c)). This method is inspired by the interaction
technique for small displays introduced by Rekimoto [1996] and Harrison et al.
[1998]. They have added solid state gyro sensors to a small display and presented
example applications for selecting menus or navigating a map by tilting the small
display screen. The prototype built with the Shared Phidgets toolkit is imple-
mented with a similar technology. A Phidget accelerometer (attached to a graphic
LCD) is used to determine the current orientation of the display. The tilting of the
device controls the scrolling through the timeline of the digital photo collection
(illustrated in Figure 7.3(c)). The visualisation of the accelerometer status with
the interface skins in Figure 7.4(b) supports the integration of this sensor into the
appliance control software. The AccelerationChange event handler notifies the
appliance software of orientation changes of the accelerometer. The event han-

107

Chapter 7 Case Studies and Discussion

Figure 7.4: Appliance control user interface and simulations.

dler method observes if the value passes a certain threshold (lines 7 and 10 of
Figure 7.5). If the value is above the threshold, the displayed image is changed
by specifying the transition and assigning the new image of the digital image col-
lection (lines 8/9 and 11/12 of Figure 7.5). The simulation utilities shown in
Figure 7.4(c) can be used to easily create test cases to evaluate and debug these
methods.

1 private void accelerometer_AccelerationChange

2 (object sender , AccelerationChangeEventArgs e) {

3 // Only proceed if the value of the first axis of the accelerometer is changed

4 if (e.Index == 0) {

5 // If the value is higher/lower than the threshold , set the transition

6 // of the display and change the displayed image

7 if (e.Acceleration < -0.5) {

8 this.graphicLCD.Transition = GraphicLCD.TRANSITION_RIGHT;

9 this.graphicLCD.Image = this.imageCollection.GetNextImage ();

10 } else if (e.Acceleration > 0.5) {

11 this.graphicLCD.Transition = GraphicLCD.TRANSITION_LEFT;

12 this.graphicLCD.Image = this.imageCollection.GetPreviousImage ();

13 } } }

Figure 7.5: Source code for the navigation through an image collection.

Furthermore, the RFID reader attached to the display and accelerometer is used
to identify objects that are nearby; for instance the digital photo frames, or tagged
digital artefacts or photo printouts. The TagManager notifies the appliance if new
tags are found. On the one hand, if the associated information of this tag repre-
sents a digital image file, this image is shown on the mobile display (line 3 and 4
of Figure 7.6). On the other hand, if the associated information of the tag repre-
sents a graphic LC display of a digital photo frame (lines 8 and 9 of Figure 7.6),

108

Chapter 7 Case Studies and Discussion

the current selected image of the appliance unit is transferred to this digital photo
frame as illustrated in Figure 7.3(b).

1 void tagManager_FoundTag(object sender , FoundTagEventArgs e) {

2 // If the RFID tag is associated with a file: display the image

3 if (e.TaggingType == TaggingType.File)

4 this.graphicLCD.Image = this.imageCollection.GetImage(e.Value);

5

6 // If the RFID tag describes a hardware device , check if the type

7 // of the device is a graphic display , and set the displayed image of this

display

8 else if (e.TaggingType == TaggingType.Device) {

9 if (Util.GetTypeFromPath(e.Value) == Constants.DEVICE_GRAPHICLCD) {

10 this.sharedDictionary[e.Value + "set/transition"] = GraphicLCD.

TRANSITION_NONE;

11 this.sharedDictionary[e.Value + "set/image"] = this.graphicLCD.Image;

12 } } }

Figure 7.6: Source code for using RFID tags as identifications for artefacts and hardware.

Discussion

The appliance source code illustrates the usage of the toolkit API (e. g., registering
event handlers for the accelerometer changes, and the detected RFID tags) as
well as the direct access to the shared data model (e. g., the access to the photo
displays by changing the hardware model entries). The scenario also illustrates
the application of the RFID tagging mechanism: the physical artefacts (e. g., photo
printouts and other objects) are coupled with the digital representation of the
photos, and RFID tags are also used to identify the hardware of the digital photo
frames (by specifying the unique path to the data model of the hardware).

Developers can easily extend the application and explore other combinations of
hardware. For instance, the accelerometer can be used to detect simple gestures
(e. g., shaking, waving)3 and interpret these simple gestures to assign the photos
to the digital photo frames, as illustrated in Figure 7.3(d). A vibration motor can
be used to provide tangible feedback, for instance when an image is found (left
side of Figure 7.3(a)). The accelerometer could also be replaced with a circular
touch sensor to navigate through the photo collection. A GPS sensor could be
used with the appliance to assign digital information to physical locations. Besides
digital photos, the appliance could also be extended to integrate different media
and information (e. g., sound, web links).

In summary, the presented prototype integrates simple to use methods for the in-
teraction with the tangible interface (tilting, proximity, pointing). It also brings

3 Development project: PhotoLines [Marquardt, 2008].

109

Chapter 7 Case Studies and Discussion

the digital information (that usually resides on the desktop computer) into the ev-
eryday environment. The easy to use API and the encapsulated software building
blocks allowed the rapid development of a prototype as well as iterations in the
design to experiment with various forms of tangible interaction.

7.1.3 Remote and Ambient Awareness

This third introduced appliance4 is an example of an ambient display that provides
awareness information about a person at a distant location. For instance, the
awareness display could be situated in the home of a family and indicates if the
working parent is sitting at her desk, is around in the office, or is absent.

Implementation

Figure 7.7: Awareness appliance implementa-
tion with an ambient display.

The first part of the appliance is lo-
cated in the office room and includes
a proximity sensor near the desk to de-
termine if someone sits at the desk. A
force sensor at the door observes if the
door is opened or closed. These two
sensor values are utilised to estimate
the availability of the working person.
The counter part of the appliance is
illustrated in Figure 7.7 and includes
a figurine representation mounted on
top of a servo motor. The position of
the figurine can represent the availabil-
ity status (facing the front = Available,
side = Around, back = Absent). The
current status is furthermore displayed on a connected text LC display.

The infrastructure visualisation utility shown in Figure 7.8 is an important utility
to support the developer with the integration of the remote located hardware sen-
sors and displays. By means of the visualisation developers can get an overview of
existing hardware (the markers in the centre of Figure 7.8), review the current ap-
pliance configuration (the lines between the markers in the centre of Figure 7.8),
and control or view details of the hardware by using the interface skins (left and
right side of Figure 7.8).

4 Development project: AmbientAwareness [Marquardt, 2008].

110

Chapter 7 Case Studies and Discussion

Figure 7.8: Infrastructure visualisation of the distributed hardware.

The implemented source code of the appliance is shown in Figure 7.9. At first,
the callback method for the sensor uses a separate method to determine the cur-
rent availability status. In this Aggregate method (lines 14-20 in Figure 7.9), the
sensor values are interpreted and the method returns the estimated availability
status. This is then used to change the servo position and the display text ac-
cordingly (lines 8 and 9 in Figure 7.9). Finally, the appliance is also adding a
high-level entry to the shared data space (line 10 in Figure 7.9).

Discussion

While this prototype is only a simple implementation of an awareness display,
it highlights the process of aggregating sensor values to high-level interpretations
[Salber et al., 1999; Dey, 2000] and indicating awareness information (abstracted
from the sensors) to remote located actuators. With it, this example comprises
concepts of the Physical but Digital Surrogates [Greenberg and Kuzuoka, 2001]
and the Door Mouse [Buxton, 1997]. The example appliance illustrated the pro-
cessing of sensor data, interpretation of the raw sensor values, and deriving con-
text information (i. e., the presence of a person). This information is easily pub-
lished to the shared data model, and therefore it is available as high-level event
to all other connected appliances.

Because the toolkit facilitates the access to the sensor information (local and re-
mote located), developers can explore the possible aggregations and interpreta-
tions of sensor data, to derive high-level context information. These can be im-
portant steps to evaluate the applicability of such an appliance. Especially when

111

Chapter 7 Case Studies and Discussion

1 // Enumerate three availability states; labels for LCD

2 enum Availability {Present = 0, Around = 1, Absent = 2 };

3 string [] labels = new string [3] {"Present", "Around", "Absent"};

4

5 // New sensor values received; update the appliance

6 private void iK_SensorChange (...){

7 int status = this.Aggregate(iK.Sensors [0]. Value , iK.Sensors [1]. Value);

8 textLCD.Display = labels [status];

9 servo.Motors [0]. Position = 90 * status;

10 this.PublishProcessingValue("presence -status/" + username , labels[status]);

11 }

12

13 // Aggregate the sensor values into an availability state

14 private int Aggregate (int forceSensor , int proximitySensor) {

15 bool door = (forceSensor < 50); // door opened if force < 50

16 bool seated = (proximitySensor < 300); // seated if proximity < 300

17 if (door && seated) return (Availability.Present);

18 else if (door && !seated) return (Availability.Around);

19 else return (Availability.Absent);

20 }

Figure 7.9: Source code for awareness appliance.

sensors are embedded in the environment of users it is important to consider pri-
vacy and security issues in the appliance design. Therefore, the toolkit supports
developers to find adequate abstractions that provide useful context information,
but preserving privacy at the same time.

7.1.4 Further Appliance Examples

This subsection covers additional example prototypes that illustrate the spectrum
of diverse appliances developers can build by means of the Shared Phidgets tool-
kit.

The Location-Dependent Object Controller5 takes up on the ideas of the Ubicomp
Browser research project [Beigl et al., 1998], as well as the Point and Click pro-
totype [Beigl, 1999]. It is a tool for end users to obtain information about the
interactive interface components embedded in their environment with a simple
tangible device. As introduced earlier (cf. Subsection 6.1.2), hardware devices
can be attached with an RFID tag for identification. Once the user brings the
tangible controller near to a device, the display shows information about this
hardware on the screen of the controller. This allows end users to monitor and
control embedded sensors. This appliance could be extended to create data flow
links between components. These links would then represent the application logic
and would define the forwarding of events from a sensor source to an actuator.

5 Development project: LocationDependentObjectController [Marquardt, 2008].

112

Chapter 7 Case Studies and Discussion

Therefore, users would be able to create simple connection links between physical
user interface components without programming a single line of code and only
by using the tangible controller.

The Augmented Map appliance6 discovers the idea of augmenting a physical map
with digital information; whereas this prototype covers the research ideas of Reit-
mayr et al. [2005] and Reilly et al. [2006], as well as the research of the Cameleon
prototype developed by Fitzmaurice [1993]. To implement the system, multiple
RFID tags are attached onto the backside of a paper map (e. g. a city plan). These
tags are associated with digital information, for instance digital photos, text, or
Uniform Resource Locators (URL). This digital information are then in turn dis-
played once the RFID reader of the tangible controller (a device similar to the
tangible photo browser of Subsection 7.1.2) covers a certain area of the map.
The attached RFID reader identifies the tag and the appliance displays the corre-
sponding digital content on the display of the tangible controller. The prototype
implementation therewith facilitates the exploration of the user interaction with
these digitally augmented maps.

Figure 7.10: Create associations between
the digital and physical
world.

The tangible controller (cf. Subsec-
tion 7.1.2) can be extended7 with an easy
to use mechanism that allows users to add
new associations of digital information to
physical artefacts by themselves; similar to
ideas of Yonezawa et al. [2006] and Nunes
et al. [2008]. With this information ap-
pliance people can use a simple stamp
metaphor to assign specific digital informa-
tion (for instance a digital image) to a phys-
ical artefact as illustrated in Figure 7.10.
This technique is implemented with an at-
tached force sensor on the backside of the
tangible controller: if the user stamps the
controller onto a physical artefact (e. g., pa-
per maps, photos, souvenirs) and the RFID reader detects an RFID tag of this
artefact, then the currently selected digital information (e. g., photos, web links,
videos, text) is associated with this physical artefact. The information appliance
software is adding a corresponding entry in the shared dictionary that maps the
received RFID tag and the digital information. This technique could be also used
with the described Augmented Map appliance: the user can then easily add his/her
own digital information to the augmented physical map.

6 Development project: AugmentedMap [Marquardt, 2008].
7 Development project: PhotoLines [Marquardt, 2008].

113

Chapter 7 Case Studies and Discussion

The Sensor Processing appliance8 implements a demonstration of integrating sim-
ple gestures into appliances. The software is observing values of two IR distance
sensors that are mounted on top of a display. If a user in front of the screen waves
his/her hand in front of the screen to the left or right side, the distance sensor is
forwarding events to the appliance. The appliance software is then interpreting
the values and time stamps, and if they pass a certain threshold, the appliance
triggers a gesture event. As demonstration, this detected gesture is passed to the
shared dictionary (by using the appliance high-level events) and also controls the
images of a photo slide show (i. e., the commands next image and previous image).
To test the detection of the gestures, the appliance includes test cases of the Sim-
ulation Recorder (cf. Subsection 6.3.2). Future work could include the integration
of advanced sensor processing algorithms.

Other example appliances include a reimplementation of the Lumi Touch device
[Chang et al., 2001]9; an appliance that allows the activation or deactivation
of digital outputs (e. g., power outlets) by sending text message from a mobile
phone10; or the demonstration of navigating menus with an accelerometer or
circular touch sensor11.

In summary, these implemented prototypes illustrate the applicability of the tool-
kit for the development of different kinds of information appliances. Diverse phys-
ical hardware sensors and actuators—partially distributed—were utilised to build
these appliances.

7.2 Discussion and Limitations

In the remainder of the chapter the toolkit’s characteristics are discussed. This
includes the critical discussion of the toolkit implementation as well as limitations
of the toolkit design.

Klemmer et al. [2004] summarise important properties for the end user experi-
ence in software development (derived from empirical studies of the program-
mers’ community) that they apply for the evaluation of their Papier-Mâché tool-
kit: ease of use, facilitating reuse, and schemas yield similar code. They evaluate
their toolkit based on these properties; besides the common evaluation metrics for
software engineering projects: performance, reliability, and lines of code [Klemmer
et al., 2004]. Therefore, this subsection discusses the Shared Phidgets toolkit im-

8 Development project: SensorProcessing [Marquardt, 2008].
9 Development project: LumiTouch [Marquardt, 2008].
10 Development project: MobileController [Marquardt, 2008].
11 Development project: Menu [Marquardt, 2008].

114

Chapter 7 Case Studies and Discussion

plementation in consideration of these mentioned metrics and evaluation proper-
ties.

Ease of use

Providing a low threshold for the development is one of the most important re-
quirements of the Shared Phidgets toolkit. With the introduced programming
strategies, the library of programming building blocks, as well as the seamless
integration into the IDE, the toolkit minimises the necessary tasks for develop-
ers. The appliance case studies in this chapter have illustrated the easy to use
applicability of the toolkit; especially the use of the API library.

It is, however, important to note that even with a low threshold the development
of appliances still requires fundamental programming knowledge. Users with no
previous programming experience are not able to create custom applications as
it would be possible with end user programming systems [Myers, 1986; Gross
and Marquardt, 2007]. The toolkit also does not directly address the needs of
interaction designers, which might prefer the building of prototypes in Adobe
Flash or Director. Therefore, even if the toolkit minimises the development efforts
in terms of the requirements for developers, there still remains the initial barrier
of necessary fundamental programming skills.

The applicability of the toolkit has also been proven with the distribution of the
toolkit to other developers. The Shared Phidgets toolkit has recently been applied
for the development of physical user interfaces in an HCI course, and is also used
by several academic and industrial research labs. It is planned, however, to further
evaluate the application and use of the toolkit by other developers.

Facilitating Reuse

The encapsulation of the hardware access in the proxy objects builds the founda-
tion of the reusable programming building blocks that are included in the devel-
oper library. Experienced developers can easily add additional proxy objects by
using the extensible class framework introduced in Section 5.4. The high-level
events of appliances are another mechanism to facilitate reuse. If an appliance is
publishing high-level events to the shared dictionary, other appliances can simply
register for these events to receive notifications of updated values.

Schemas Yield Similar Code

With this characteristic Klemmer et al. [2004] describe the advantages of similar
code structures in development projects. It is desirable that the toolkit design
yields to similar code patterns between programmers (but also for one program-

115

Chapter 7 Case Studies and Discussion

mer across different tasks) because this “minimises design errors, facilitates collab-
oration, and makes maintaining the code of others easier” [Klemmer et al., 2004].

So far the coding practices of developers using the Shared Phidgets toolkit have
not yet been formally evaluated. The experiences, however, with the develop-
ment of the appliance case studies have shown first development characteristics.
These are for instance the frequently used event callbacks of the proxy objects,
the only rarely used direct access to the shared data model, and the methods how
appliances exchange information by using high-level events.

Performance, Scalability and Latency

The scalability of the development platforms is an important aspect in the devel-
opment of ubiquitous computing applications [Helal, 2005; Abowd, 1999]. Bal-
lagas et al. [2003] summarise in the evaluation of the iStuff toolkit that “the issue
of latency is inevitable in ubiquitous computing because of its distributed nature. Al-
though latency can be minimised, it must be tolerated at some level in ubiquitous
computing environments.” As it is important to estimate the performance of the
Shared Phidgets runtime platform, this subsection discusses the scalability and
latency issues.

To evaluate the performance of the Shared Phidgets toolkit, the toolkit network
connection was tested with round-trip latency12 measurement. In these tests13,
the platform was able to handle around 1000 events per second, with a packet
size of 100 byte for each event, and an average round-trip latency of 35 ms. These
results are comparable to the IBM TSpace server [Lehman et al., 2001] and the
ECT [Greenhalgh et al., 2004]; both of these systems include a similar distributed
data space architecture.

The Shared Phidgets toolkit runtime platform was tested with infrastructure in-
stallations that comprise around 30 hardware devices connected to multiple dis-
tributed clients and with a network connection to a single server instance. The
Connector software was able to handle these installations without any perfor-
mance issues, and for most prototyping implementations this number of around
30 connected hardware devices is likely to be sufficient (cf. Subsection 2.6.5).
However, developers are not limited to this number of devices and can easily in-

12 Round-trip latency: measuring the period of time it takes for an event to be transmitted from
the client to the server and back to the client. These latency tests for the Shared Phidgets
toolkit can be executed with the PerformanceTestUnit development project.

13 Setup of the tests: two standard Intel 2.2 GHz PC, 1024 MB RAM, connected with a 802.11g
wireless network connection. The test measurements however do not cover the delay caused
by the hardware implementations; for instance delays of sensors or servo motors. These
delays are dependent on the available hardware, and are therefore not considered in these
networking tests.

116

Chapter 7 Case Studies and Discussion

tegrate more hardware devices. Two factors influence the maximum number of
supported devices: the frequency of the sensor events (e. g., high data rate of an
accelerometer vs. low data rate of an RFID reader), and the data size of the sent
packages (e. g., large packet sizes of binary images vs. small packet sizes of events
with integer values). Especially with frequently sent events of large binary data to
the shared dictionary the latency of the transmitted events will increase. As men-
tioned earlier (cf. Subsection 4.2.2), for the case that it is necessary to overcome
these scalability issues, future work could include the exchange of the underlying
network system with peer-to-peer infrastructure that implements load-balancing
algorithms [Bienkowski et al., 2005].

Reliability

The reliability aspects of the toolkit include the robustness of the runtime platform
and the transparency of the current status. The robustness of the runtime platform
has been tested with device infrastructures for prototypes that were running up
to one week. Nonetheless, additional tests would be necessary to further evaluate
the runtime robustness of the Shared Phidgets toolkit platform; especially if the
toolkit is utilised to support evaluation of deployed prototypes. The available
utilities of the toolkit can provide the developers a transparent overview of the
current status of the infrastructure. At any time, they can monitor the available
hardware; for instance to check the current values of sensors or to confirm that an
RFID reader is connected and working correctly. Furthermore, with the appliance
view in the geographical infrastructure visualisation developers can check the
status and data flow of appliances at runtime.

Lines of code

The demonstrated information appliances presented in Section 7.1 have shown
that it is possible to build information appliance prototypes with only around 20–
50 lines of code. This code comprises the necessary code for the implementation
of the application logic, whereas additional code is automatically provided by the
appliance template (initialises network connection, provides methods for high-
level events), the IDE visual designer (if classes from the developer library are in-
stantiated by using the toolbox integration), and the Shared Phidgets toolkit code
framework generator add-in (creates proxy object constructors, provides member
initialisation, adds interface skins). Furthermore, the toolkit facilitates the trans-
mission of events between appliances as well (by using high-level events) that
can further minimise the necessary lines of code by subscribing for these events.
Future work could include the extensions of the software building blocks in the
developer library (cf. Section 8.1).

117

Chapter 7 Case Studies and Discussion

7.3 Chapter Summary

This chapter has described three case studies of prototype appliances built with
the Shared Phidgets toolkit. These example case studies, as well as briefly de-
scribed further appliances, are integrating various hardware sensors and actuators
that are partially distributed at different locations. For each of these appliances
the implementation was briefly described and the prototype design as well as the
toolkit support discussed. Finally, at the end of the chapter, the toolkit design and
limitations have been discussed.

118

CHAPTER 8

Conclusions and Future Work

The Shared Phidgets toolkit supports developers to build their visions of inter-
active distributed physical user interfaces. This thesis first motivated the re-
search project, investigated the application area of physical user interfaces and
the related research work, and derived the requirements for a prototyping tool-
kit. Based on these requirements, the Chapters 4–6 have introduced the concept
and implementation of the Shared Phidgets toolkit runtime platform, developer li-
brary, and advanced development utilities. The evaluation of the toolkit included
the development of appliance case studies and a discussion of the implemented
toolkit.

In this last chapter, first the future work continuing the research of this thesis
project is discussed. Second, the thesis contributions are summarised. Finally, the
closing words conclude the thesis.

8.1 Future Work

Although the toolkit introduced with this thesis facilitates the development of dis-
tributed physical user interfaces, there are issues in the context of prototyping
information appliances that can be investigated in further detail. The next sec-
tion gives an overview of the research areas and topics that can extend the work
presented in this thesis. Some of the mentioned research areas are based on the
limitations of the toolkit already discussed in Section 7.2.

119

Chapter 8 Conclusions and Future Work

Further Evaluations

The presented case studies in Chapter 7 were only an initial evaluation of the
toolkit and the developed appliances. Even though these case studies illustrate
the application areas and the applicability of the toolkit and the utilities, it is
important to evaluate the development process in further detail. This could in-
clude the comparative evaluation of different programming strategies, as well as
the evaluation of occurring patterns in the development process when developing
distributed interfaces.

It is also necessary to gain a deeper insight into the way users work and live with
the embedded physical user interfaces. This can lead to a deeper understanding
of how the developed technology has to be designed to merge seamlessly with the
social practices of people [Dourish, 2001].

Library Extensions

The runtime architecture and developer library of the toolkit already support a
wide range of diverse hardware devices as building blocks for new physical inter-
faces. Nonetheless, further hardware could be integrated by means of the runtime
platform extensions (cf. plug-ins explained in Subsection 4.4.1). Feasible would
be advanced identification devices (e. g., RFID readers with collision detection1,
bluetooth identification), new LC display technologies, and smaller wireless sen-
sors.

Besides additional hardware, the library of software building blocks could be ex-
tended with additional components and user interface skins. This could include
components to filter, aggregate, and interpret raw sensor data (similar to Context
Widgets [Dey, 2000]); as well as advanced visualisations of sensor values.

Advanced Sensor Processing

When working with physical user interfaces that are built with a variety of sensors,
it is also necessary to provide more powerful ways for the interpretation of the
raw sensor data. This could be achieved with data mining algorithms that monitor
the low-level sensor values and derive high level information from these values.
For instance, these algorithms could be used to recognise gestures of users that
are captured with distance and motion sensors.

The Shared Phidgets toolkit provides a good starting point for the integration of
these algorithms. By simply adding the needed sensor components and register-

1 The currently used Phidget RFID reader does not provide a collision detection. This means
that only one RFID tag can be detected at the same time. If multiple tags are in the range of
the RFID antenna it is not guaranteed that any of these tags are detected.

120

Chapter 8 Conclusions and Future Work

ing for the events of the sensors, the algorithms could use this information to
search for patterns in the received sensor values. The Exemplar system developed
by Hartmann et al. [2006] for instance uses the Dynamic Time Warping algorithm2

to detect pattern occurrences in a series of sensor values. A similar detection al-
gorithm could be integrated as an appliance software unit of the Shared Phidgets
toolkit, and publish the recognised gestures as high-level events to the shared data
space. This would in turn raise notifications to all registered event listeners; for
instance another appliance that is interpreting these high-level events to control
an actuator.

End user Reconfiguration

The toolkit and utilities presented in this thesis address in particular the needs
of application developers. However, the introduced concepts and utilities to fa-
cilitate the exploration of interactive environments could also support end users
getting information about the embedded technology. Further research could in-
troduce end user utilities based on the map visualisation presented in Section 6.2,
or the RFID tagging mechanism introduced in Subsection 6.1.2. Furthermore,
the toolkit’s functionality for the reconfiguration of appliances could be used as a
basis for tools that end users can apply for changing appliance configurations to
their personal needs.

Utilities and Visualisation

The introduced infrastructure visualisation of the distributed hardware sensors,
actuators, and appliances can be the foundation of advanced visualisation sys-
tems. For instance, the map could display the history of occurred events (e. g., as
colour coded trails between the hardware components). Furthermore, the visual-
isation could include advanced interactive functionality to control the data flow
between hardware devices and appliances (e. g., a drag-and-drop functionality
to create new connections) and extend the functionality of the metadata regions
(e. g., with conjunction and disjunction operations).

8.2 Thesis Contributions

The main objective of this thesis was to facilitate the development of distributed
physical user interface prototypes. To achieve this objective, the concept of the

2 The Dynamic Time Warping algorithm was primarily applied in speech recognition engines,
but is recently also utilised in gesture recognition engines of sensor-based interactive systems
[Hartmann et al., 2006].

121

Chapter 8 Conclusions and Future Work

Shared Phidgets toolkit has been introduced. The contributions of this thesis are a
flexible runtime platform that allows the remote access to distributed hardware, a
developer library that facilitates the programming of information appliances, and
utilities that let developers easily monitor and control the distributed hardware
and appliances.

The implemented runtime platform facilitates the setup of infrastructures for the
distributed access to physical sensor and actuator hardware. The Connector soft-
ware maintains a shared data space to connect all client machines over the net-
work. The implemented reference plug-ins automatically integrate locally at-
tached hardware into the shared data space; for instance accelerometer sensors,
servo motors, and graphic displays. Most importantly, once the software is in-
stalled it manages these tasks autonomously and is running in the background of
the operating system. The class framework facilitates the development of plug-ins
to integrate custom hardware into the infrastructure. With these characteristics,
the runtime platform meets all the requirements described in Section 3.3.

To let developers build information appliances with physical user interfaces, the
second contribution of the thesis is the developer library. With the object-oriented
API of the proxy objects for the hardware access, as well as the seamless inte-
gration into the development environment (for instance with programming tem-
plates, integrated device browser, automatic code framework generator) the de-
veloper library provides a low threshold for developers with no experience of pro-
gramming hardware. In addition, the introduced appliance model, metadata in-
formation, and the interface skins also facilitate the development of appliances.
Case studies in Chapter 7 have proven the applicability of the developer library
and shown that prototypes can be built with around 20–50 lines of code that
developers have to implement. To furthermore provide a high ceiling, expert de-
velopers can access the shared data model directly (e. g., for the efficient access to
collections of hardware devices) and can develop extensions of the library (e. g.,
custom proxy objects, filters, aggregators) by deriving new classes from the frame-
work interfaces of abstract base classes.

Finally, the third contribution of the thesis is the development of a collection of
development utilities that support the monitoring, control, and simulation of the
distributed hardware devices. First, the monitoring and control utilities allow the
access to the three abstraction levels of the toolkit: the shared data space level,
the hardware device level, and the appliance level. Second, the advanced spatial
visualisation utility shows the network of appliances as well as the hardware at
their geographical locations. This utility therefore allows insights into the inter-
nal connections and event flow of appliances, supported by the details-on-demand
user interface. Finally, the integration of simulations allows the testing and debug-
ging of appliances. While the simulation interface components provide Wizard of

122

Chapter 8 Conclusions and Future Work

Oz simulations of the hardware, the recording mechanism allows the recording of
complex sensor values or an event series in general, and the later testing of the
appliance based on the recordings.

These three main parts of the toolkit work seamlessly together and complement
each other. By using the Shared Phidgets toolkit developers can focus on the in-
teraction design of the envisioned information appliances. The facilitation of the
rapid prototyping process by means of the toolkit is the most important contribu-
tion of this thesis project.

8.3 Closing Words

I would like to conclude this thesis with a quotation from Mark Weiser that points
out an inspiring motivation behind the research of ubiquitous computing:

“Most important, ubiquitous computers will help overcome the prob-
lem of information overload. There is more information available at our
fingertips during a walk in the woods than in any computer system, yet
people find a walk among trees relaxing and computers frustrating. Ma-
chines that fit the human environment instead of forcing humans to enter
theirs will make using a computer as refreshing as taking a walk in the
woods.” [Weiser, 1991]

This is a very important motivation behind the research of this thesis. I invite
the readers of this thesis to try out the Shared Phidgets toolkit by themselves and
to discover the creation of innovative and unconventional user interactions with
physical interfaces.

http://grouplab.cpsc.ucalgary.ca/cookbook/

I hope that the Shared Phidgets toolkit will support many application developers
with the exploration of physical user interfaces, in order that these innovations
come up to Mark Weiser’s vision of interfaces that fit the human environment.

123

References

ABOWD, G. D. 1996. Software Engineering and Programming Language Con-
siderations for Ubiquitous Computing. ACM Computing Surveys, Special Issue:
Position Statements on Strategic Directions in Computing Research 28, 4, 190.

ABOWD, G. D. 1999. Software Engineering Issues for Ubiquitous Computing. In
Proceedings of the 21st International Conference on Software Engineering - ICSE
1999 (Los Angeles, CA, USA). IEEE Computer Society Press, Los Alamitos, CA,
USA, 75–84.

ABOWD, G. D. AND MYNATT, E. D. 2000. Charting Past, Present, and Future
Research in Ubiquitous Computing. ACM Transactions on Computer-Human In-
teraction 7, 1, 29–58.

BABULAK, E. 2006. Automated Smart House 2015 via Ubiquitous Computing. In
Proceedings of the International Conference on Interactive Mobile and Computer
Aided Learning - IMCL 2006 (Amman, Jordan).

BALLAGAS, R., MEMON, F., REINERS, R., AND BORCHERS, J. 2007. iStuff Mobile:
Rapidly Prototyping New Mobile Phone Interfaces for Ubiquitous Computing. In
Proceedings of the 25th ACM Conference on Human Factors in Computing Systems
- CHI 2007 (San Jose, CA, USA). ACM Press, New York, NY, USA.

BALLAGAS, R., RINGEL, M., STONE, M., AND BORCHERS, J. 2003. istuff: a physical
user interface toolkit for ubiquitous computing environments. In Proceedings of
the 21th ACM Conference on Human Factors in Computing Systems - CHI 2003
(Fort Lauderdale, Florida, USA). ACM Press, New York, NY, USA, 537–544.

BALLAGAS, R., SZYBALSKI, A., AND FOX, A. 2004. Patch Panel: Enabling Control-
flow Interoperability in Ubicomp Environments. In Proceedings of the Second
IEEE Annual Conference on Pervasive Computing and Communications - PerCom
2004 (Orlando, Florida, USA). 241.

BARRETT, R. AND MAGLIO, P. P. 1998. Informative Things: How to Attach Infor-
mation to the Real World. In Proceedings of the 11th Annual ACM Symposium

124

References

on User Interface Software and Technology - UIST 1998 (San Francisco, CA, USA).
ACM Press, New York, NY, USA, 81–88.

BEIGL, M. 1999. Point & Click - Interaction in Smart Environments. In Proceedings
of the 1st International Symposium on Handheld and Ubiquitous Computing -
HUC 1999 (Karlsruhe, Germany). Springer, 311–313.

BEIGL, M., SCHMIDT, A., LAUFF, M., AND GELLERSEN, H.-W. 1998. The Ubi-
compBrowser. In Proceedings of the 4th ERCIM Workshop on User Interfaces for
All.

BIENKOWSKI, M., KORZENIOWSKI, M., AND AUF DER HEIDE, F. M. 2005. Dynamic
Load Balancing in Distributed Hash Tables. In Proceedings of the 4th Interna-
tional Workshop on Peer-to-Peer Systems - IPTPS 2005. 217–225.

BOYLE, M. AND GREENBERG, S. 2005. Rapidly Prototyping Multimedia Group-
ware. In Proceedings of the 11th International Conference on Distributed Multi-
media Systems - DMS 2005 (Banff, Canada). Knowledge Systems Institute.

BRUMITT, B., MEYERS, B., KRUMM, J., KERN, A., AND SHAFER, S. 2000. Easy
Living: Technologies for Intelligent Environments. In Proceedings of the Second
International Symposium on Handheld and Ubiquitous Computing - HUC 2000
(Bristol, UK). 12–27.

BUXTON, W. A. S. 1995. Integrating the Periphery and Context: A New Model
of Telematics. In Proceedings of Graphics Interface - GI 1995 (Quebec, Canada).
239–246.

BUXTON, W. A. S. 1997. Living in Augmented Reality: Ubiquitous Media and
Reactive Environments. In Video Mediated Communication, K. Finn, A. Sellen,
and S. Wilber, Eds. Lawrence Erlbaum Associates, Inc., Hillsdale, N.J., USA,
363–384.

BUXTON, W. A. S. 2007. Sketching User Experience : Getting the Design Right and
the Right Design. Morgan Kaufmann Publishers, San Francisco, CA, USA.

CHANG, A., RESNER, B., KOERNER, B., WANG, X., AND ISHII, H. 2001. Lumi-
Touch: An Emotional Communication Device. In Extended Abstracts of the 19th
ACM Conference on Human Factors in Computing Systems - CHI 2001 (Seattle,
Washington, USA). ACM Press, New York, NY, USA, 313–314.

CONSOLVO, S., ROESSLER, P., AND SHELTON, B. E. 2004. The CareNet Display:
Lessons Learned from an In Home Evaluation of an Ambient Display. In Proceed-
ings of the Sixth International Conference on Ubiquitous Computing - UbiComp
2004 (Nottingham, UK), N. Davies, E. D. Mynatt, and I. Siio, Eds. Lecture Notes
in Computer Science, vol. 3205. Springer, Nottingham, UK, 1–17.

125

References

CONSOLVO, S. AND TOWLE, J. 2005. Evaluating an Ambient Display for the Home.
In Extended Abstracts of the 23th ACM Conference on Human Factors in Comput-
ing Systems - CHI 2005 (Portland, Oregon, USA). ACM Press, New York, NY,
USA, 1304–1307.

CRAMPTON SMITH, G. 1995. The Hand That Rocks the Cradle. I.D.

DEY, A. K. 2000. Providing Architectural Support for Building Context-Aware
Applications. Ph.D. thesis, Georgia Institute of Technology.

DOURISH, P. 2001. Where the Action Is: The Foundations of Embodied Interaction.
The MIT Press.

DOW, S., MACINTYRE, B., LEE, J., OEZBEK, C., BOLTER, J. D., AND GANDY, M.
2005. Wizard of Oz Support throughout an Iterative Design Process. IEEE
Pervasive Computing 4, 4, 18–26.

DUCHENEAUT, N., SMITH, T. F., BEGOLE, J. B., NEWMAN, M. W., AND BECKMANN,
C. 2006. The Orbital Browser: Composing Ubicomp Services Using Only Rota-
tion and Selection. In Extended Abstracts of the 24th ACM Conference on Human
Factors in Computing Systems - CHI 2006 (Montreal, Quebec, Canada). ACM
Press, New York, NY, USA, 321–326.

EGGLESTONE, S. R., BOUCHER, A., GREENHALGH, C., HUMBLE, J., LAW, A., PEN-
NINGTON, S., , AND RODDEN, T. 2006. Supporting Collaboration in the Deploy-
ment of Ubiquitous Computing Installations. In Ubiquitous Systems Workshop
(UbiSys) at the Eighth International Conference on Ubiquitous Computing - Ubi-
Comp 2006 (Orange County, CA, USA). Irvine, California, USA.

EGGLESTONE, S. R., HUMBLE, J., GREENHALGH, C., RODDEN, T., AND HAMP-
SHIRE, A. 2006. The Equator Component Toolkit: Managing Digital Information
Flow in the Home. In Adjunct Proceedings of the 19th Annual ACM Symposium
on User Interface Software and Technology - UIST 2006 (Montreux, Switzerland).
ACM Press, New York, NY, USA.

ELLIOT, K., NEUSTAEDTER, C., AND GREENBERG, S. 2007. StickySpots: Using Lo-
cation to Embed Technology in the Social Practices of the Home. In Proceedings
of the 1st International Conference on Tangible and Embedded Interaction - TEI
2007 (Baton Rouge, LA, USA). ACM Press, New York, NY, USA, 79–86.

ELLIOT, K., WATSON, M., NEUSTAEDTER, C., AND GREENBERG, S. 2007. Location-
Dependent Information Appliances for the Home. In Proceedings Graphics Inter-
face - GI 2007 (Montreal, Quebec, Canada).

FITZMAURICE, G. W. 1993. Situated Information Spaces and Spatially Aware
Palmtop Computers. Communications of the ACM 36, 7, 39–49.

126

References

FITZMAURICE, G. W., ISHII, H., AND BUXTON, W. A. S. 1995. Bricks: Laying the
Foundations for Graspable User Interfaces. In Proceedings of the ACM Conference
on Human Factors in Computing Systems - CHI 1995 (Denver, Colorado, USA).
ACM Press, New York, NY, USA, 442–449.

FITZPATRICK, G., KAPLAN, S., MANSFIELD, T., DAVID, A., AND SEGALL, B. 2002.
Supporting Public Availability and Accessibility with Elvin: Experiences and
Reflections. Computer Supported Cooperative Work 11, 3, 447–474.

GREENBERG, S. 2005. Collaborative Physical User Interfaces. In Communication
and Collaboration Support Systems, K. Okada, T. Hoshi, and T. Inoue, Eds. IOS
Press (Amsterdam, The Netherlands).

GREENBERG, S. 2007. Toolkits and Interface Creativity. Multimedia Tools and
Applications 32, 2, 139–159.

GREENBERG, S. AND BOYLE, M. 2002. Customizable Physical Interfaces for In-
teracting with Conventional Applications. In Proceedings of the 15th Annual
ACM Symposium on User Interface Software and Technology - UIST 2002 (Paris,
France). ACM Press, New York, NY, USA, 31–40.

GREENBERG, S. AND FITCHETT, C. 2001. Phidgets: Easy Development of Physical
Interfaces Through Physical Widgets. In Proceedings of the 14th Annual ACM
Symposium on User Interface Software and Technology - UIST 2001 (Orlando,
Florida, USA). ACM Press, New York, NY, USA, 209–218.

GREENBERG, S. AND KUZUOKA, H. 2001. Using Digital but Physical Surrogates to
Mediate Awareness, Communication and Privacy in Media Spaces. In Personal
Technologies. Elsevier.

GREENBERG, S. AND ROSEMAN, M. 1999. Groupware Toolkits for Synchronous
Work. In Computer-Supported Cooperative Work (Trends in Software 7),
M. Beaudouin-Lafon, Ed. Vol. 7. Wiley & Sons, Chapter 6, 135–168.

GREENHALGH, C., IZADI, S., MATHRICK, J., HUMBLE, J., AND TAYLOR, I. 2004.
ECT: A Toolkit to Support Rapid Construction of Ubicomp Environments. In
Workshop on System Support for Ubiquitous Computing (UbiSys) at the Confer-
ence on Ubiquitous Computing - UbiComp 2004 (Nottingham, UK). Nottingham,
UK.

GROSS, T. AND MARQUARDT, N. 2007. CollaborationBus: An Editor for the Easy
Configuration of Ubiquitous Computing Environments. In Proceedings of the
15th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing - PDP 2007 (Naples, Italy). Naples, Italy, 307–314.

127

References

HARRISON, B. L., FISHKIN, K. P., GUJAR, A., MOCHON, C., AND WANT, R. 1998.
Squeeze Me, Hold Me, Tilt Me! An Exploration of Manipulative User Interfaces.
In Proceedings of the ACM Conference on Human Factors in Computing Systems -
CHI 1998 (Los Angeles, California, USA). ACM Press, New York, NY, USA, 17–24.

HARTMANN, B., KLEMMER, S. R., BERNSTEIN, M., ABDULLA, L., BURR, B.,
ROBINSON-MOSHER, A., AND GEE, J. 2006. Reflective Physical Prototyping
Through Integrated Design, Test, and Analysis. In Proceedings of the 19th An-
nual ACM Symposium on User Interface Software and Technology - UIST 2006
(Montreux, Switzerland). ACM Press, New York, NY, USA, 299–308.

HELAL, S. 2005. Programming Pervasive Spaces. IEEE Pervasive Computing 04, 1,
84–87.

HELAL, S., MANN, W., EL-ZABADANI, H., KING, J., KADDOURA, Y., AND JANSEN,
E. 2005. The Gator Tech Smart House: A Programmable Pervasive Space. Com-
puter 38, 3, 50–60.

HUDSON, S. E. AND MANKOFF, J. 2006. Rapid Construction of Functioning Phys-
ical Interfaces from Cardboard, Thumbtacks, Tin Foil and Masking Tape. In
Proceedings of the 19th Annual ACM Symposium on User Interface Software and
Technology - UIST 2006 (Montreux, Switzerland). ACM Press, New York, NY,
USA, 289–298.

ISHII, H. AND ULLMER, B. 1997. Tangible Bits: Towards Seamless Interfaces Be-
tween People, Bits and Atoms. In Proceedings of the ACM Conference on Human
Factors in Computing Systems - CHI 1997 (Atlanta, Georgia, USA). ACM Press,
New York, NY, USA, 234–241.

JOHANSON, B. AND FOX, A. 2002. The Event Heap: A Coordination Infrastructure
for Interactive Workspaces. In Proceedings of the Fourth IEEE Workshop on Mo-
bile Computing Systems and Applications. IEEE Computer Society, Washington,
DC, USA, 83–93.

KASAL, A., LIU, J., MILLER, J., NATH, S., ROUHANA, D., SANTANCHE, A., AND

ZHAO, F. 2007. SenseWeb Project. http://research.microsoft.com/nec/

senseweb/. Website. Website last visited on September 18, 2007.

KIDD, C. D., ORR, R., ABOWD, G. D., ATKESON, C. G., ESSA, I. A., MACINTYRE,
B., MYNATT, E. D., STARNER, T., AND NEWSTETTER, W. 1999. The Aware
Home: A Living Laboratory for Ubiquitous Computing Research. In Cooperative
Buildings. 191–198.

KIM, S. W., KIM, M. C., PARK, S. H., JIN, Y. K., AND CHOI, W. S. 2004. Gate Re-
minder: A Design Case of a Smart Reminder. In Proceedings of the 5th ACM Con-

128

http://research.microsoft.com/nec/senseweb/
http://research.microsoft.com/nec/senseweb/

References

ference on Designing Interactive Systems - DIS 2004 (Cambridge, Massachusetts,
USA). ACM Press, New York, NY, USA, 81–90.

KLEMMER, S. R., LI, J., LIN, J., AND LANDAY, J. A. 2004. Papier-Mache: Toolkit
Support for Tangible Input. In Proceedings of the ACM Conference on Human
Factors in Computing Systems - CHI 2004 (Vienna, Austria). ACM Press, New
York, NY, USA, 399–406.

LEACH, P., MEALLING, M., AND SALZ, R. 2005. A Universally Unique IDenti-
fier (UUID) URN Namespace. http://www.ietf.org/rfc/rfc4122.txt. The
Internet Engineering Task Force (IETF), Network Working Group, Request for
Comments: 4122. Website last visited on February 10, 2008.

LEE, J. C., AVRAHAMI, D., HUDSON, S. E., FORLIZZI, J., DIETZ, P. H., AND LEIGH,
D. 2004. The Calder Toolkit: Wired and Wireless Components for Rapidly
Prototyping Interactive Devices. In Proceedings of the 5th ACM Conference on
Designing Interactive Systems - DIS 2004 (Cambridge, Massachusetts, USA). ACM
Press, New York, NY, USA, 167–175.

LEHMAN, T. J., COZZI, A., XIONG, Y., GOTTSCHALK, J., VASUDEVAN, V., LANDIS,
S., DAVIS, P., KHAVAR, B., AND BOWMAN, P. 2001. Hitting the Distributed
Computing Sweet Spot with TSpaces. Computer Networks: The International
Journal of Computer and Telecommunications Networking 35, 4, 457–472.

LI, Y., HONG, J. I., AND LANDAY, J. A. 2007. Design Challenges and Principles
for Wizard of Oz Testing of Location-Enhanced Applications. IEEE Pervasive
Computing 6, 2, 70–75.

LIU, L. AND KHOOSHABEH, P. 2003. Paper or Interactive?: A Study of Prototyping
Techniques for Ubiquitous Computing Environments. In Extended Abstracts of
the 21st ACM Conference on Human Factors in Computing Systems - CHI 2003
(Fort Lauderdale, Florida, USA). ACM Press, New York, NY, USA, 1030–1031.

MARQUARDT, N. 2008. Shared Phidgets (Downloads, Tutorials, Exam-
ples). http://grouplab.cpsc.ucalgary.ca/cookbook/index.php/Toolkits/

SharedPhidgets3. Developer Cookbook of the GroupLab at the University of
Calgary. Website last visited on March 10, 2008.

MATTHEWS, T. 2005. Peripheral Display Toolkit: A Toolkit for Managing User
Attention in Peripheral Displays. M.S. thesis, Computer Science Division, Uni-
versity of California, Berkeley.

MATTHEWS, T., DEY, A. K., MANKOFF, J., CARTER, S., AND RATTENBURY, T. 2004.
A Toolkit for Managing User Attention in Peripheral Displays. In Proceedings of
the Annual ACM Symposium on User Interface Software and Technology - UIST
2004 (Santa Fe, New Mexico, USA). ACM Press, New York, NY, USA, 247–256.

129

http://www.ietf.org/rfc/rfc4122.txt
http://grouplab.cpsc.ucalgary.ca/cookbook/index.php/Toolkits/SharedPhidgets3
http://grouplab.cpsc.ucalgary.ca/cookbook/index.php/Toolkits/SharedPhidgets3

References

MEIJER, E. AND GOUGH, J. 2000. Technical Overview of the Common Language
Runtime. http://research.microsoft.com/~emeijer/Papers/CLR.pdf. Mi-
crosoft. Website last visited on November 20, 2007.

MICROSOFT CORPORATION. 2007a. Microsoft Virtual Earth Interactive SDK.
http://dev.live.com/virtualearth/sdk/. Website last visited on November
3, 2007.

MICROSOFT CORPORATION. 2007b. Virtual Earth Map Control 5.0. http://

msdn2.microsoft.com/en-us/library/bb429619.aspx. Microsoft Developer
Network. Website last visited on November 10, 2007.

MICROSOFT CORPORATION. 2007c. Virtual Earth Website - Windows Live Local.
http://local.live.com/. Website last visited on November 14, 2007.

MICROSOFT CORPORATION. 2007d. Visual Studio 2005 Developer Center. http:
//msdn.microsoft.com/vstudio/. Microsoft Developer Network. Website last
visited on September 10, 2007.

MICROSOFT RESEARCH. 2007. MapCruncher for Virtual Earth Website. http://
research.microsoft.com/mapcruncher/. Microsoft Research Website. Website
last visited on September 5, 2007.

MORRIS, M. R. 2004. Visualization for Casual Debugging and System Awareness
in a Ubiquitous Computing Environment. In Adjunct Proceedings of the Sixth
International Conference on Ubiquitous Computing - UbiComp 2004 (Nottingham,
UK).

MYERS, B. A. 1986. Visual Programming, Programming by Example, and Program
Visualization: A Taxonomy. In Proceedings of the 4th ACM Conference on Human
Factors in Computing Systems - CHI 1986 (Boston, Massachusetts, USA). ACM
Press, New York, NY, USA, 59–66.

MYERS, B. A., HUDSON, S. E., AND PAUSCH, R. 2000. Past, Present, and Fu-
ture of User Interface Software Tools. ACM Transactions on Computer-Human
Interaction 7, 1, 3–28.

MYNATT, E. D., BACK, M., WANT, R., BAER, M., AND ELLIS, J. B. 1998. Designing
Audio Aura. In Proceedings of the ACM Conference on Human Factors in Com-
puting Systems - CHI 1998 (Los Angeles, California, USA). ACM Press, New York,
NY, USA, 566–573.

MYNATT, E. D., ROWAN, J., JACOBS, A., AND CRAIGHILL, S. 2001. Digital Family
Portraits: Supporting Peace of Mind for Extended Family Members. In Proceed-
ings of the ACM Conference on Human Factors in Computing Systems - CHI 2001
(Seattle, Washington, USA). ACM Press, New York, NY, USA, 333–340.

130

http://research.microsoft.com/~emeijer/Papers/CLR.pdf
http://dev.live.com/virtualearth/sdk/
http://msdn2.microsoft.com/en-us/library/bb429619.aspx
http://msdn2.microsoft.com/en-us/library/bb429619.aspx
http://local.live.com/
http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vstudio/
http://research.microsoft.com/mapcruncher/
http://research.microsoft.com/mapcruncher/

References

NAGEL, K., KIDD, C. D., O’CONNELL, T., DEY, A. K., AND ABOWD, G. D. 2001. The
Family Intercom: Developing a Context-Aware Audio Communication System.
In Proceedings of the Third International Conference on Ubiquitous Computing -
UbiComp 2001 (Atlanta, Georgia, USA). Springer-Verlag, London, UK, 176–183.

NIELSEN, J. 1993. Usability Engineering. Morgan Kaufmann Publishers.

NORMAN, D. A. 1988. The Psychology of Everyday Things. Basic Books, New York,
NY, USA.

NORMAN, D. A. 1999. The Invisible Computer: Why Good Products Can Fail, the
Personal Computer Is So Complex, and Information Appliances Are The Solution.
MIT Press.

NORMAN, D. A. AND DRAPER, S. W. 1986. User Centered System Design; New Per-
spectives on Human-Computer Interaction. Lawrence Erlbaum Associates, Inc.,
Mahwah, NJ, USA.

NUNES, M., GREENBERG, S., AND NEUSTAEDTER, C. 2008. Sharing Digital Pho-
tographs in the Home through Physical Mementos, Souvenirs, and Keepsakes.
In Proceedings of the ACM Conference on Designing Interactive Systems - DIS 2008
(Cape Town, South Africa).

PHIDGETS INC. 2008. Phidgets Product Website. http://www.phidgets.com. Web-
site last visited on October 24, 2007.

PREECE, J., ROGERS, Y., AND SHARP, H. 2002. Interaction Design. John Wiley &
Sons, Inc., New York, NY, USA.

PRINZ, W. AND GROSS, T. 2001. Ubiquitous Awareness of Cooperative Activities
in a Theatre of Work. In Proceedings of Fachtagung Arbeitsplatzcomputer: Perva-
sive Ubiquitous Computing - APC 2001 (Munich, Germany), A. Bode and W. Karl,
Eds. VDE Publisher, 135–144.

REILLY, D., RODGERS, M., ARGUE, R., NUNES, M., AND INKPEN, K. 2006. Marked-
up Maps: Combining Paper Maps and Electronic Information Resources. Per-
sonal Ubiquitous Computing 10, 4, 215–226.

REITMAYR, G., EADE, E., AND DRUMMOND, T. 2005. Localisation and Interaction
for Augmented Maps. In Proceedings of the Fourth IEEE and ACM International
Symposium on Mixed and Augmented Reality - ISMAR 2005 (Vienna, Austria).
IEEE Computer Society, Washington, DC, USA, 120–129.

REKIMOTO, J. 1996. Tilting Operations for Small Screen Interfaces. In Proceedings
of the 9th Annual ACM Symposium on User Interface Software and Technology -
UIST 1996 (Seattle, Washington, USA). ACM Press, New York, NY, USA, 167–
168.

131

http://www.phidgets.com

References

ROSEMAN, M. 1993. Design of a Real-Time Groupware Toolkit. M.S. thesis, Uni-
versity of Calgary, Department of Computer Science.

RUDD, J., STERN, K., AND ISENSEE, S. 1996. Low vs. High-Fidelity Prototyping
Debate. ACM interactions 3, 1, 76–85.

SALBER, D., DEY, A. K., AND ABOWD, G. D. 1999. The Context Toolkit: Aiding the
Development of Context-Enabled Applications. In Proceedings of the ACM Con-
ference on Human Factors in Computing Systems - CHI 1999 (Pittsburgh, Penn-
sylvania, USA). ACM Press, New York, NY, USA, 434–441.

SANTANCHE, A., NATH, S., LIU, J., PRIYANTHA, B., AND ZHAO, F. 2006. SenseWeb:
Browsing the Physical World in Real Time. In Proceedings of the Fifth ACM/IEEE
International Conference on Information Processing in Sensor Networks - IPSN
2006. Nashville, TN.

SCHILIT, B. N., ADAMS, N., GOLD, R., TSO, M. M., AND WANT, R. 1993. The
PARCTAB Mobile Computing System. In Workshop on Workstation Operating
Systems. 34–39.

SELLEN, A., HARPER, R., EARDLEY, R., IZADI, S., REGAN, T., TAYLOR, A. S., AND

WOOD, K. R. 2006. HomeNote: Supporting Situated Messaging in the Home.
In Proceedings of the 20th ACM Conference on Computer Supported Cooperative
Work - CSCW 2006 (Banff, Alberta, Canada). ACM Press, New York, NY, USA,
383–392.

SHNEIDERMAN, B. 1996. The Eyes Have It: A Task by Data Type Taxonomy for In-
formation Visualizations. In Proceedings of IEEE Symposium on Visual Languages.
336–343.

SOHN, T. AND DEY, A. 2003. iCAP: An Informal Tool for Interactive Prototyping of
Context-Aware Applications. In Extended Abstracts of the 21st ACM Conference
on Human Factors in Computing Systems - CHI 2003 (Fort Lauderdale, Florida,
USA). ACM Press, New York, NY, USA, 974–975.

SUN MICROSYSTEMS, INC. 2007. Java Beans Architecture. http://java.sun.com/
products/javabeans/. Sun Developer Network (SDN). Website last visited on
October 30, 2007.

ULLMER, B. AND ISHII, H. 1997. The metaDESK: Models and Prototypes for Tan-
gible User Interfaces. In Proceedings of the 10th Annual ACM Symposium on
User Interface Software and Technology - UIST 1997 (Banff, Alberta, Canada).
ACM Press, New York, NY, USA, 223–232.

ULLMER, B. AND ISHII, H. 2000. Emerging Frameworks for Tangible User Inter-
faces. IBM Systems Journal 39, 3-4, 915–931.

132

http://java.sun.com/products/javabeans/
http://java.sun.com/products/javabeans/

References

VILLAR, N. AND GELLERSEN, H. 2007. A Malleable Control Structure for Softwired
User Interfaces. In Proceedings of the 1st International Conference on Tangible
and Embedded Interaction - TEI 2007 (Baton Rouge, LA, USA). ACM Press, New
York, NY, USA, 49–56.

WANT, R., FISHKIN, K. P., GUJAR, A., AND HARRISON, B. L. 1999. Bridging Phys-
ical and Virtual Worlds with Electronic Tags. In Proceedings of the ACM Confer-
ence on Human Factors in Computing Systems - CHI 1999 (Pittsburgh, Pennsylva-
nia, USA). ACM Press, New York, NY, USA, 370–377.

WANT, R., HOPPER, A., FALCAO, V., AND GIBBONS, J. 1992. The Active Badge
Location System. ACM Transactions on Information Systems 10, 1, 91–102.

WEISER, M. 1991. The Computer for the 21st Century. Scientific American 265, 3
(September), 66–75.

WEISER, M. 1993. Some Computer Science Issues in Ubiquitous Computing. Com-
munications of the ACM 36, 7, 75–84.

WEISER, M. 1996. Ubiquitous Computing Website at XEROX PARC. http:

//sandbox.xerox.com/ubicomp/. Website last visited on February 2, 2008.

WEISER, M. AND BROWN, J. S. 1996. Designing Calm Technology. PowerGrid
Journal 1, 1.

WEISER, M. AND BROWN, J. S. 1997. The Coming Age of Calm Technology.
Beyond Calculation: The Next Fifty Years 1, 75–85.

WISNESKI, C., ISHII, H., DAHLEY, A., GORBET, M., BRAVE, S., ULLMER, B., AND

YARIN, P. 1998. Ambient Displays: Turning Architectural Space into an Inter-
face between People and Digital Information. In First International Workshop on
Cooperative Buildings - Integrating Information, Organization, and Architecture -
CoBuild 1998. Darmstadt, Germany, 22+.

WORLD WIDE WEB CONSORTIUM (W3C). 1999. XML Path Language (XPath).
http://www.w3.org/TR/xpath. W3C Recommendation. Website last visited on
September 12, 2007.

YONEZAWA, T., SAKAKIBARA, H., NAKAZAWA, J., TAKASHIO, K., AND TOKUDA, H.
2006. Spot & Snap: A Bootstrap Interaction for DIY Smart Object Services. In
Adjunct Proceedings of the Eighth International Conference on Ubiquitous Com-
puting - UbiComp 2006 (Orange County, CA, USA).

133

http://sandbox.xerox.com/ubicomp/
http://sandbox.xerox.com/ubicomp/
http://www.w3.org/TR/xpath

Acronyms

3D Three-Dimensional
ACM Association of Computing Machinery
API Application Programming Interface
CHI Computer-Human Interaction
CLI Common Language Infrastructure
CLR Common Language Runtime
COM Component Object Model
DLL Dynamic Linked Library
GIS Geographic Information System
GPS Global Positioning System
GSM Global System for Mobile Communications
GUI Graphical User Interface
GUID Globally Unique Identifier
HCI Human-Computer Interaction
HTML Hypertext Markup Language
HTTP Hypertext Transmission Protocol
ID Identification
IDE Integrated Development Environment
I/O Input / Output
IR Infrared
LC Liquid Crystal
LCD Liquid Crystal Display
LED Light Emitting Diode
LOC Lines of Code
MODEM Modulator-Demodulator
MVC Model-View-Controller
NMEA National Marine Electronics Association
OO Object-Oriented
OOP Object-Oriented Programming

134

References

PC Personal Computer
PDA Personal Digital Assistant
PUI Physical User Interface
RF Radio Frequency
RFID Radio Frequency Identification
SDK Software Development Kit
SE Software Engineering
SMS Short Message Service
TCP/IP Transmission Control Protocol/Internet Protocol
TUI Tangible User Interface
UbiComp Ubiquitous Computing
UI User Interface
UML Unified Modelling Language
URL Uniform Resource Locator
USB Universal Serial Bus
WLAN Wireless Local Area Network
WOz Wizard of Oz simulations
XML Extended Markup Language

135

APPENDIX A

Development

A.1 System Requirements

This appendix section gives a brief introduction of the development requirements
of the Shared Phidgets toolkit architecture.

The toolkit, the developer library, and all included utilities are written in Mi-
crosoft C#.NET 2.0 (Version 2.0.50727). Nonetheless, developers can choose to
use the developer library with any of the managed .NET programming languages
supported by the Common Language Runtime (CLR) [Meijer and Gough, 2000].
These are Visual Basic, J#, C++, and C#. The source files of the Shared Phidgets
toolkit are compiled with the C#.NET 2.0 compiler. The toolkit can be used with
the versions 3.0 and 3.5 of the .NET platform as well. A limited version of the
developer library is available for the .NET 1.1 target platform. The source code
examples of classes and interfaces in this thesis are written in C#.NET 2.0.

Microsoft Visual Studio 2005 (Version 8.0.50727.42) is recommended as the In-
tegrated Development Environment (IDE). The setup of the toolkit automatically
integrates the developer library into the visual designer toolbox and the add-in
into the Visual Studio IDE. The developer library can be used for development in
Visual Studio 2008 as well, though. Nonetheless, the add-in is not yet compatible
with Visual Studio 2008. The Shared Phidgets toolkit can also be referenced from
any .NET project without using the IDE, but using the command line compiler
directly.

136

Appendix A Development

The following list provides an overview of the requirements:

◦ Operating System: Microsoft Windows 2000, XP, or Vista.

◦ Programming Languages: supported are all programming languages of the
Microsoft .NET CLR: Visual Basic, J#, C++, and C#. Supported versions of
the .NET framework are 2.0, 3.0, and 3.5. Limited support for 1.1.

◦ Development Environment: target IDE is Visual Studio 2005 [Microsoft
Corporation, 2007d] (full integration of the development tools). The Toolkit
is also tested with Visual Studio 2008 (add-in not available), and a previous
toolkit version is available for Visual Studio 2002 and 2003 (with .NET 1.1).
The toolkit developer library can be used with any other IDE and the .NET
CLR compiler directly.

◦ Virtualisation: tested with VMware Fusion (Version 1.0 and 1.1) and Paral-
lels Desktop (Version 2.0) under Apple Mac OS X (Version 10.4.10). Limited
support for Microsoft Virtual PC 2004 on Mac OS X; Virtual PC does not sup-
port all USB devices.

A.2 Development Projects

The Shared Phidgets toolkit consists of the following C#.NET development projects1:

◦ SharedPhidgetsPlatform: The connector tool and all plug-ins (Phidgets,
Phidgets Remote, GPS Module, GSM Gateway, and Graphic LCD).

◦ SharedPhidgetsLibrary: This project includes the developer library with
the proxy objects, interface skins, and all other implemented programming
objects.

◦ SharedPhidgetsUtilities: Includes the implementations of the utilities (e. g.,
explorer, map visualisation).

◦ SharedPhidgetsAddIn: The implementation of the Visual Studio add-in.
The setup integrates this add-in into Visual Studio 2005.

◦ SharedPhidgetsUseCases: Includes the example implementations and case
studies explained in the thesis.

◦ SharedPhidgetsTemplate: The project template for Shared Phidgets projects.
The setup integrates this template into Visual Studio 2005.

1 These projects are included on the /src/ folder of the thesis DVD and are available for down-
load at http://grouplab.cpsc.ucalgary.ca/cookbook/

137

http://grouplab.cpsc.ucalgary.ca/cookbook/

Appendix A Development

◦ SharedPhidgetsExamples: Simple programming examples that illustrate
the programming with the proxy objects and interface skins.

◦ SharedPhidgetsWirelessDisplay: Client software running on Windows Mo-
bile devices to use these devices as wireless Graphic LCDs.

◦ SharedPhidgetsSetups: Development projects for the compilation of the
two versions of the setup program.

138

APPENDIX B

Developer Library API

Name Pr
ox

y
C

om
po

ne
nt

In
te

rf
ac

e
Sk

in
Si

m
ul

at
io

n
C

on
ne

ct
io

n
M

an
ag

em
en

t

Description

Accelerometer Proxy component to access the Phidget Ac-
celerometer hardware.

AccelerometerSkin User control to observe the Phidget Accelerometer
attributes, and to control the measurement sensi-
tivity.

AccelerometerTimeline Graph timeline representation of the numeric
Phidget Accelerometer values.

ApplianceManager Overview of all current running information appli-
ances built with the Shared Phidgets toolkit. Pro-
vides controls to view interface skins, simulations,
and observer windows.

CircularTouchSkin User control for the Phidget CircularTouch device.
This control wraps an InterfaceKit proxy com-
ponent.

ConnectionManager Component to handle the remote connection to
the central Connector instance. Provides methods
to specify the remote address, and to open or close
the connection.

ConnectionManagerSkin User control to enter the remote address and
open/close a connection.

Table B.1: .NET components in the developer library (A-C).

139

Appendix B Developer Library API

Name Pr
ox

y
C

om
po

ne
nt

In
te

rf
ac

e
Sk

in
Si

m
ul

at
io

n
C

on
ne

ct
io

n
M

an
ag

em
en

t

Description

ConnectionManagerSkinTiny Very small user control to enter the remote
address and open/close a connection. Opens
a dialog window to specify the remote ad-
dress.

DeviceContainer Represents a single hardware device, and
displays the device properties.

DeviceManager Provides event handlers to get notifications
of attached and detached hardware devices.

DeviceManagerSkin User control with a list view of all currently
attached hardware devices.

DeviceSelection User control that provides various methods
for the user to select a physical hardware de-
vice.

DictionaryManager User control that provides a list view of all
key/value pairs in the shared dictionary. Pro-
vides controls to search, edit, add, and delete
entries.

EditObject User control to edit value entries of the
shared dictionary; (i. e., strings, boolean,
bitmap, integers, doubles).

Encoder Proxy component for the Phidget Encoder
hardware; measures rotation.

EncoderSkin User control for the Phidget Encoder hard-
ware; displays rotation and status of the dig-
ital input.

ExpandableGroupBox Extends the default .NET GroupBox with
controls to collapse/expand the view.

GPS Proxy component for the GPS signal receiver.
GPSSkin User control that displays the current longi-

tude and latitude of the GPS signal.
GraphicLCD Proxy component for the colour graphic LC

displays.
GraphicLCDSkin User control for the colour graphic LCD. Pro-

vides methods to send test images, write text
messages, draw sketches, and choose transi-
tion effects.

Table B.2: .NET components in the developer library (C-G).

140

Appendix B Developer Library API

Name Pr
ox

y
C

om
po

ne
nt

In
te

rf
ac

e
Sk

in
Si

m
ul

at
io

n
C

on
ne

ct
io

n
M

an
ag

em
en

t

Description

GraphicsMenu Provides methods to work with a selection menu on a
graphic LCD.

GraphicsText Provides methods to display text messages with images
on a graphic LCD (with templates).

GraphSkin Graph timeline visualisation for numeric sensor values.
GSMGateway Proxy component for a GSM gateway; can be used to

send and receive text messages from mobile phones.
GSMGatewaySkin User control for the GSM gateway hardware. Users can

send text messages and view all incoming messages.
ImageCollection Container object for a collection of digital images.
InterfaceKit Proxy component to access the Phidget InterfaceKit hard-

ware. These I/O boards include digital inputs and out-
puts as well as analog sensor inputs.

InterfaceKitSkin User controls to view the status of the input and outputs
of the Phidget InterfaceKit.

LED Proxy component to control the Phidget LED hardware;
can control the brightness of up to 64 LEDs.

LEDSkin User control for the Phidget LED hardware; allows the
user to specify the brightness of the LEDs.

LibraryInfo Displays version and release information of the Shared
Phidgets toolkit library.

MapControl User control that displays the geospatial map visualisa-
tion of the Shared Phidgets infrastructure.

MotorControl Proxy component for the Phidget Motor Controller hard-
ware.

MotorControlSkin User control that allows the user to specify the accelera-
tion and velocity of up to two connected motors.

RFID Proxy component for the Phidget RFID reader.
RFIDSkin User control that displays the incoming received RFID

tags.
SensorSkin Graph timeline visualisation for the sensor values of an

analog sensor input of an InterfaceKit.
Servo Proxy component for the Phidget Servo hardware; con-

trols up to four servo motors.
ServoSkin User control that allows users to specify the position of

the Phidget servo motors.

Table B.3: .NET components in the developer library (G-S).

141

Appendix B Developer Library API

Name Pr
ox

y
C

om
po

ne
nt

In
te

rf
ac

e
Sk

in
Si

m
ul

at
io

n
C

on
ne

ct
io

n
M

an
ag

em
en

t

Description

SimulationAccelerometer User control to simulate an Phidget Accelerom-
eter hardware device.

SimulationGraphicLCD User control to simulate a graphic LC display.
SimulationGSM User control to simulate a GSM gateway and

mobile phones.
SimulationInterfaceKit User control to simulate a Phidget InterfaceKit.
SimulationManager User controls that allows the creation of multi-

ple simulated devices.
SimulationRecording User control to record/playback a time series of

sensor and hardware events.
SimulationRFID User control to simulate a Phidget RFID hard-

ware.
TagManager Facilitates the association of RFID tags to digital

information (e.g., files, devices, names).
TagManagerSkin User control that enables users to create associ-

ations between RFID tags and digital informa-
tion.

TextLCD Proxy component to access the Phidget Text
LCD hardware.

TextLCDSkin User control to specify the displayed text of the
Phidget Text LCD.

UniversalSkin Generic user control that displays the corre-
sponding interface skin for a specified hardware
(e.g., by setting the dictionary path).

UniversalSkinSmall Smaller version of the user control that works
similar to the UniversalSkin.

WeightSensor Proxy component to access the Phidget Weight
Sensor hardware.

WeightSensorSkin User control that displays the current measured
weight of the sensor.

XMLPersistence Allows the persistent storage of shared dictio-
nary entries in an XML file.

Table B.4: .NET components in the developer library (S-X).

142

APPENDIX C

Implemented Hardware Devices

The following tables give an overview of the most commonly used hardware com-
ponents that are implemented in the Shared Phidgets toolkit developer library.
The information includes the corresponding API proxy objects in the .NET devel-
oper library and the important properties and event handlers of the objects. It
also shows the available graphical interface skins for the hardware. These inter-
face skins are included in the developer library as .NET user controls.

143

Appendix C Implemented Hardware Devices

Accelerometer Hardware

Implementation of the Phidget Accelerometer: this sen-
sor can measure the acceleration of movement, as
well as tilting of the sensor between -90 and +90 de-
grees. Two versions are available: two and three axis
accelerometer.
The AccelerometerSkin displays an overview of the
current position of the axis, and the sensitivity of the
measurement (including three preset configurations).
The AccelerometerTimeline displays a graph repre-
sentations of the last 30 seconds of the two or three
accelerometer axis values.

Application:

◦ Detection of movement and simple gestures.
◦ Determine the orientation of a device (and orientation changes).
◦ Input controllers: navigating menus, select items, etc.
◦ Detect vibration or shaking of the sensor.

API Methods and Properties:

◦ accelerometer.Axes[<index>].Acceleration: The current value of the axis, as dou-
ble value between -1.0 and 1.0.

◦ accelerometer.Axes[<index>].Sensitivity: The sensitivity of the axis, as double
value between -1.0 and 1.0. The AccelerationChange event notifies subscribers if the
delta change of the axis is higher than the sensitivity threshold.

API Events:

◦ accelerometer.AccelerationChange: Notifies if the acceleration value of the axis has
changed (depending on the current sensitivity value). This is a thread-safe event, and
can be used for UI changes.

◦ accelerometer.AccelerationChangeAsynchronous: Notifies if the acceleration value
of the axis has changed (depending on the current sensitivity value). This event is not
thread-safe, but provides faster asynchronous event notifications.

◦ accelerometer.Attach/Detach/Error: Default events of the BaseComponent class to
send notifications if device is attached, detached, or an error occurred.

Table C.1: Accelerometer hardware and API.

144

Appendix C Implemented Hardware Devices

Encoder Hardware

Implementation of the Phidget Encoder: the encoder
can measure the rotation (for instance of a dial or a
motor). The encoder also includes a digital input that
can be used as selection button. Extended versions of
the encoder controlling board can connect to multiple
encoders.
The EncoderSkin shows the current position of the
encoder dial, and the status of the digital input but-
ton.

Application:

◦ Input: input control with continuous rotation (e. g., dial) and selection (by pressing the
button).

◦ Measuring: the encoder can measure rotations (e. g., of an attached motor).

API Methods and Properties (Subset):

◦ encoder.Encoders[<index>].Position: Get the position of the encoder.
◦ encoder.Encoders.Count: Get the number of connected encoders.
◦ encoder.Inputs[<index>].State: Get the status of the digital input.
◦ encoder.Encoders.Count: Get the number of digital inputs.

API Events (Subset):

◦ encoder.PositionChange: Event notification when the position of one of the encoders
changes.

◦ encoder.InputChange: Event notification when the status of one of the digital inputs
changes.

◦ encoder.Attach/Detach/Error: Default events of the BaseComponent class to send
notifications if device is attached, detached, or an error occurred.

Table C.2: Encoder hardware and API.

145

Appendix C Implemented Hardware Devices

GPS Hardware
Implementation of a GPS Receiver: the device provides
the longitude and latitude coordinates of the cur-
rent location. The implementation can be used with
NMEA compatible devices (e. g., Microsoft Pharos
GPS-360).
The GPSSkin shows the longitude and latitude coor-
dinates of the current location, and the timestamp of
the last update.

Application:

◦ Location-aware applications: build applications that can provide information depen-
dent on the current location.

◦ Locate objects or people.
◦ Update the geographical location of the hardware devices (e. g., the location of situated

displays in the environment).
◦ Associate information to a specific location.

API Methods and Properties (Subset):

◦ gps.LastPosition.Longitude: Get the longitude coordinate of the last position as
double value.

◦ gps.LastPosition.Latitude: Get the latitude coordinate of the last position as dou-
ble value.

API Events (Subset):

◦ gps.GpsPositionChanged: Event notification when the current location changes (new
longitude and latitude coordinates).

◦ gps.Attach/Detach/Error: Default events of the BaseComponent class to send notifi-
cations if device is attached, detached, or if an error occurred.

Table C.3: GPS hardware and API.

146

Appendix C Implemented Hardware Devices

GraphicLCD Hardware

Implementation of the wired or wireless graphic
colour LCD. In the current implementation these dis-
plays are based on Windows Mobile 5 hardware, and
the displays are connected over the wireless network.
The screen of the device can display images up to a
resolution of 320x240 pixel (larger images are auto-
matically scaled down to this resolution). A future
release of the plug-in will support the ezLCD screens
(http://www.ezlcd.com/).
The graphical skin displays the current image, and in-
cludes functions to send text messages, drawn notes,
or image files to the display. The skin supports drag
and drop of image files.

Application:

◦ Displays can be used for situated and ambient displays.
◦ Displaying text messages or notes.
◦ Displays for event notifications and reminders.
◦ Visual feedback for a local or remote located controller.
◦ Status display.

API Methods and Properties (Subset):

◦ graphiclcd.Image: Set the image to display (images that are larger than the screen
resolution are scaled down).

◦ graphiclcd.Text: Displays a text message on the display.
◦ graphiclcd.Transition: Change the transition effect (is used when new images are

displayed). The GraphicLCD class includes constant members for the transition settings:
sliding image to the right or left side of the screen, or deactivate the transition.

API Events:

◦ graphiclcd.DisplayedImageChange: Notifies if the displayed image of the graphic LC
display was changed.

◦ graphiclcd.Attach/Detach/Error: Default events of the BaseComponent class to
send notifications if device is attached, detached, or an error occurred.

Table C.4: Graphic LCD hardware and API.

147

Appendix C Implemented Hardware Devices

GSM Gateway Hardware

Implementation of a GSM gateway: by using the GSM
gateway (e. g., via a connected GSM phone modem)
it is possible to send and receive text messages from
mobile phones (SMS).
The GSMGatewaySkin displays the current status of
the connected GSM modem (e. g., phone number,
connection status). It also displays the sent and re-
ceived messages, and can be used to send text mes-
sages directly.

Application:

◦ Information: send users information about an important occurred event.
◦ Control: let users send text messages with commands to control the environment (e. g.,

lights on or lights off).
◦ Location-based messaging: users can send messages and reminders to situated displays

that are for instance at different locations inside of a building.

API Methods and Properties (Subset):

◦ gsmgateway.SendMessage(string number, string message): Send a text message
to the specified phone number.

◦ gsmgateway.PhoneModel: Get the model of the connected GSM modem.
◦ gsmgateway.SignalStrength: Get the signal strength of the GSM modem.

API Events (Subset):

◦ gsmgateway.ReceivedSms: Event notification when new SMS messages are received.
◦ gsmgateway.SentSms: Event notification when new SMS messages are sent.
◦ gsmgateway.Attach/Detach/Error: Default events of the BaseComponent class to

send notifications if device is attached, detached, or an error occurred.

Table C.5: GSM gateway hardware and API.

148

Appendix C Implemented Hardware Devices

InterfaceKit and Sensor Hardware
Implementation of the Phidget Interface Kit: this
generic I/O board has multiple digital inputs and out-
puts, as well as analog inputs (for sensors). There
exist different hardware versions, with varying num-
bers of inputs and outputs.
The InterfaceKitSkin displays all inputs and out-
puts, and their current value (digital status or analog
value).
The SensorSkin displays a graph plot of a single ana-
log sensor of the InterfaceKit.
The CircularTouchSkin is a graphical interface for
the circular touch sensor, a special form of the In-
terfaceKit.

Application:

◦ Digital input: connect physical switches, buttons, contact sensors, reed sensors, etc.
◦ Digital outputs: control lights, signals, relays (e. g., for controlling power outlets), etc.
◦ Analog sensors: measure temperature, movement, distance, force, pressure, rotation,

etc.

API Methods and Properties (Subset):

◦ interfacekit.Sensors[<index>].Value: Get the current value of the analog sensor
as integer value between 0 and 1000.

◦ interfacekit.Inputs[<index>].State: Get the status of the digital input as boolean
value: true or false.

◦ interfacekit.Outputs[<index>].State: Get/set the status of the digital output as
boolean value: true or false.

API Events (Subset):

◦ interfacekit.InputChange: Notifications when the status of one of the digital inputs
changes.

◦ interfacekit.OutputChange: Notifications when the status of one of the digital out-
puts changes.

◦ interfacekit.SensorChange: Notifications when the value of one of the connected
sensors changes.

◦ interfacekit.SensorChangeAsynchronous: Notifications when the sensor value
changes (event is not thread-safe).

◦ interfacekit.Attach/Detach/Error: Default events of the BaseComponent class to
send notifications if device is attached, detached, or an error occurred.

Table C.6: InterfaceKit and sensors hardware and API.

149

Appendix C Implemented Hardware Devices

LED Controller Hardware

Implementation of the Phidget LED Controller: with
this controller board, up to 64 LEDs can be activat-
ed/deactivated. The brightness of each LED can be
changed separately, as a value between 0 and 100 (in
contrast to the InterfaceKit that can only activate/de-
activate up to 8 LEDs).
The LEDSkin provides controls to change the bright-
ness of each LED, and to activate/deactivate all LEDs
at once.

Application:

◦ Illumination: use LEDs as light sources to illuminate objects.
◦ Signals: they can be used as signals and feedback indicators.

API Methods and Properties (Subset):

◦ led.Lamps[<index>].Value: Change the brightness value of one of the LEDs (integer
value between 0 and 100).

◦ led.Lamps[<index>].SetToMaximum(): Set the brightness of the LED to the maximum
level (brightness = 100).

◦ led.Lamps[<index>].SetOff(): Deactivate the LED (brightness = 0).
◦ led.SetAllToMaximum(): Set the brightness of all LEDs to the maximum level (bright-

ness = 100).
◦ led.SetAllOff(): Deactivate all LEDs (brightness = 0).

API Events (Subset):

◦ led.Attach/Detach/Error: Default events of the BaseComponent class to send notifi-
cations if device is attached, detached, or an error occurred.

Table C.7: LED controller hardware and API.

150

Appendix C Implemented Hardware Devices

Motor Controller Hardware

Implementation of the Phidget Motor Controller: two
connected motors can be controlled by changing the
acceleration and velocity.
The MotorControlSkin provides controls to change
acceleration and velocity of the two motors from the
GUI.

Application:

◦ Rotations: with a connected gearbox the motors can be used similar to servos, but with
more control over the rotations (e. g., 360 degrees).

◦ Traction units: the motors can be used to move objects (e. g., with connected wheels).

API Methods and Properties (Subset):

◦ motorcontrol.Motors.Count: The number of available motors.
◦ motorcontrol.Motors[<index>].Acceleration: Set the acceleration of the motor.
◦ motorcontrol.Motors[<index>].Velocity: Set the velocity of the motor.
◦ motorcontrol.Inputs.Count: The number of available digital inputs.
◦ motorcontrol.Inputs[<index>].Status: Get the status (true/false) of the digital

input of the motor controller.

API Events (Subset):

◦ motorcontrol.InputChange: Notifications when the status of an digital input changes.
◦ motorcontrol.Attach/Detach/Error: Default events of the BaseComponent class to

send notifications if device is attached, detached, or an error occurred.

Table C.8: Motor controller hardware and API.

151

Appendix C Implemented Hardware Devices

RFID Reader Hardware

Implementation of the Phidget RFID Reader: the
reader can identify RFID tags up to a distance of 10–
15 cm. All RFID tags have a unique 16 digit hexa-
decimal identification. The reader has no collision de-
tection; therefore, only one RFID tag can be identified
at the same time.
The RFIDSkin displays the found RFID tags, and
includes controls to activate/deactivate the antenna
and the digital outputs (e. g., LED).

Application:

◦ Identify objects (e. g., paper, cards, boxes) by attaching RFID tags to them.
◦ Identification of people (e. g., with RFID keyfob).
◦ Identify the current location (e. g., with associations between RFID tags and a geo-

graphical location).

API Methods and Properties (Subset):

◦ rfid.Antenna: Activate or deactivate the antenna of the RFID reader.
◦ rfid.LastTag: The last RFID tag detected by the reader.
◦ rfid.Output[<index>].State: Get/set the status of the digital output as boolean

value: true or false.

API Events (Subset):

◦ rfid.Tag: Event notification when an RFID tag is found.
◦ rfid.TagLost: Event notification when an RFID tag is lost.
◦ rfid.Attach/Detach/Error: Default events of the BaseComponent class to send noti-

fications if device is attached, detached, or an error occurred.

Table C.9: RFID reader hardware and API.

152

Appendix C Implemented Hardware Devices

Servo Hardware

Implementation of the Phidget Servo: the position of
the servo motors can be set to any value between 0
and 180 degrees. Two versions of the servo controller
exists: a single servo controller, and a controller for
up to four servo motors.
The ServoSkin shows the current position of the
servo motors. A slider control can be used to change
this position.

Application:

◦ Feedback display: indicate a value on a measuring scale.
◦ Move objects: the servos can be used to move objects (e. g., rotate a camera by 180

degrees).
◦ Force feedback: the servo can give feedback in a control device.
◦ Robotics: the servo motors are often used as engines for robots.

API Methods and Properties (Subset):

◦ servo.Motors[<index>].Position: Get/set the position of the specified servo motor.
◦ servo.Motors.Count: Get the number of controlled servo motors (one or four mo-

tors).

API Events (Subset):

◦ servo.PositionChange: Event notification when the position of one of the servo mo-
tor changes.

◦ servo.Attach/Detach/Error: Default events of the BaseComponent class to send no-
tifications if device is attached, detached, or an error occurred.

Table C.10: Servo hardware and API.

153

Appendix C Implemented Hardware Devices

TextLCD Hardware

Implementation of the Phidget Text LCD: this LC
display can show alphanumeric text messages (two
rows, each with 20 characters).
The TextLCDSkin shows the current displayed mes-
sage, and the user can change the text of the mes-
sage. It also provides controls to activate/deactivate
the backlight of the display.

Application:

◦ Situated Display: display messages or reminders.
◦ Feedback: provide feedback about the status of a device (e. g., display the current value

of a sensor).

API Methods and Properties (Subset):

◦ textlcd.Text: Get/set the current message of the display.
◦ textlcd.Backlight: Activate/deactivate the backlight of the display.
◦ textlcd.Cursor: Activate/deactivate a cursor on the last changed text position.

API Events (Subset):

◦ textlcd.TextChanged: Event notification when the displayed text message of the dis-
play is changed.

◦ textlcd.Attach/Detach/Error: Default events of the BaseComponent class to send
notifications if device is attached, detached, or an error occurred.

Table C.11: Text LCD hardware and API.

154

Appendix C Implemented Hardware Devices

Weight Sensor Hardware

Implementation of the Phidget Weight Sensor: this
sensor allows the weight measurement of objects or
persons.
The WeightSensorSkin provides the overview of the
measured weight.

Application:

◦ Identify objects: use the weight sensor to identify objects based on their weight (and
maybe in combination with computer vision).

◦ Keeping track of weight changes.

API Methods and Properties (Subset):

◦ weightsensor.Weight: The current measured weight (as double value).
◦ weightsensor.WeightChangeTrigger: The minimum delta difference of the weight

value to trigger the event notification.

API Events (Subset):

◦ weightsensor.WeightChange: Event notifications when the sensors measures a weight
difference (can be modified with the WeightChangeTrigger).

◦ weightsensor.Attach/Detach/Error: Default events of the BaseComponent class to
send notifications if device is attached, detached, or an error occurred.

Table C.12: Weight sensor hardware and API.

155

APPENDIX D

Contents of the Thesis Project CD

The following content is included on the thesis project CD:

◦ /bin/
Developer library and all executables of the toolkit. It is, however, recommended
to use the Shared Phidgets setup to install the toolkit. This setup (located in the
/setup/ directory) installs the toolkit as well as all additional development tools.

◦ /case_studies/
Case studies that illustrate the applicability of the toolkit. This includes various
examples of distributed information appliances. These appliances are partially de-
scribed in Chapter 7.

◦ /setup/
The setup installs the toolkit and all development utilities. It automatically inte-
grates the library into the Visual Studio IDE, adds the development template, and
installs the Shared Phidgets IDE add-in.

◦ /source/
The source code files of the Visual Studio 2005 development projects. All source
code files of the project are written in C# .NET. Besides the source code files, the
directories include the Visual Studio project files, images, binary resources, and
XML files. An overview of these projects can be found in Appendix A.2.

◦ /thesis_pdf/
The diploma thesis as Adobe PDF file (two versions: low and high resolution im-
ages).

◦ /thesis_tex/
Source LATEX files of the thesis chapters as well as the referenced figures as PNG
files. This directory also includes the BibTeX reference library file.

156

Independence Statement

Herewith I declare that I have completed this work solely and with only the help
of the mentioned references.

I authorise the Bauhaus-University Weimar and the University of Calgary to re-
produce this thesis by photocopying or by other means, in total or in part, at the
request of other institutions or individuals for the purpose of scholarly research.

Weimar, March 10, 2008

Nicolai Marquardt

157

	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Solution Overview
	Thesis Contributions
	Thesis Overview
	Conventions

	Background and Foundations
	Ubiquitous Computing
	Tangible User Interfaces
	Embodied Interaction
	Context Awareness
	Information Appliances
	Applications and Prototype Systems
	Facilitate Communication
	Providing Awareness with Ambient Displays
	Technology in the Domestic Space
	Tangible Digital Information and Media
	Summary of Prototype Characteristics

	Prototyping Techniques
	Chapter Summary

	Requirements and Toolkit Research
	Important Toolkit Strategies
	Developer-Centred Toolkit Design
	Requirements of the Toolkit
	Toolkits for Prototyping Interactive Systems
	Phidgets
	Context Toolkit
	Peripheral Displays Toolkit
	Papier-Mâché
	Calder and BOXES
	Equator Component Toolkit
	Voodoo IO Toolkit
	iStuff Toolkit
	Overview of the Reviewed Toolkits

	Chapter Summary

	Runtime Platform
	Overview of the Shared Phidgets toolkit
	Runtime Platform Concept
	Hardware Integration
	Shared Distributed Data Space
	Distributed Model-View-Controller
	Hardware Data Model
	Appliance Concept and Data Model
	Data Persistence
	Security and Privacy

	User Interaction with the Platform
	Implementation Details and Extensibility
	Plug-in Architecture
	Plug-in Reference Implementations

	Chapter Summary

	Toolkit Developer Library
	Library Structure and Development Strategies
	Programming via the Abstract Data Model
	Hardware Proxy Object API
	Interface Skins

	Appliance Development
	Appliance Development Overview
	High-level Events
	Seamless IDE Integration

	Programming with the Developer Library
	Library Implementation and Extensibility
	Chapter Summary

	Development Utilities
	Monitoring and Controlling Utilities
	Network Level
	Hardware Level
	Appliance Level

	Revealing the Invisible: Advanced Spatial Visualisation
	Overview
	Using the Infrastructure Visualisation

	Testing with Simulated Hardware
	Wizard of Oz Simulations
	Toolkit Simulation Utilities

	Scenario
	Implementation
	Chapter Summary

	Case Studies and Discussion
	Appliance Case Studies
	Location-based Messaging
	Tangible Digital Media
	Remote and Ambient Awareness
	Further Appliance Examples

	Discussion and Limitations
	Chapter Summary

	Conclusions and Future Work
	Future Work
	Thesis Contributions
	Closing Words

	References
	Development
	System Requirements
	Development Projects

	Developer Library API
	Implemented Hardware Devices
	Contents of the Thesis Project CD

