
Nicolai Marquardt
Diploma Thesis Defence
May 2008

Cooperative Media Lab - Bauhaus-University Weimar
GroupLab - University of Calgary

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Prototyping Distributed Physical User InterfacesPhysical User Interfaces
Developer Toolkit and Utilities for Rapidly Prototyping Distributed

Message

The Shared Phidgets toolkit supports developers
when building rapid prototypes of
distributed physical user interfaces.

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Outline

Introduction and Related Work

Requirements and Concept

Implementation

Case Studies, Evaluation, Future Work

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

“Next comes ubiquitous computing,
or the age of calm technology,

when technology recedes into the
background of our lives.”

Introduction

Mark Weiser,
Xerox PARC

Vision of Ubiquitous Computing

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

“Next comes ubiquitous computing,
or the age of calm technology,

when technology recedes into the
background of our lives.”

Introduction

Mark Weiser,
Xerox PARC

Vision of Ubiquitous Computing

“[…] its highest ideal is to make a computer
so embedded, so fitting, so natural,

that we use it without even thinking about it.”

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Introduction

Hiroshi Ishii,
Tangible Media Group, MIT

Tangible and Physical Interfaces

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

IntroductionDefinitions

Nicolai Marquardt – Diplom Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

 Physical and tangible user interfaces
 Information appliances vs. personal (mobile) devices
 Rapid prototyping and development cycle
 Developer support vs. end-user programming

Previous Research Projects Introduction

StickySpots
[Elliot et al., 2007]

mediaBLOCKS
[Ullmer and Ishii, 1997]

ActiveHydra
[Greenberg and Kuzuoka,
2000]

Chapter 2 Background and Foundations

(a) The ambientROOM overview. (b) Water lamp projections
as ambient
notification.

(c) Bottles as physical
handles to control
music and light.

Figure 2.5: The ambientROOM project of the Tangible Media Group [Ishii and Ullmer, 1997].

In short, with the tangible interaction Ishii and Ullmer introduced an influential
concept for the representation of digital information in the physical environment
and the interaction with these tangible bits. This research and the diverse exper-
imental prototypes were inspirations for this thesis research work and the devel-
opment of the Shared Phidgets toolkit.

2.3 Embodied Interaction

With embodied interaction Dourish [2001] introduces a concept that applies knowl-
edge and theories of philosophical and sociological research to the emerging vi-
sions of tangible computing. Dourish states that “embodiment is the property of our
engagement with the world that allows us to make it meaningful” [Dourish, 2001].
People are better in using systems that are meaningful to them and are strongly
connected to their social practices.

Dourish explains that “[e]mbodied interaction is the creation, manipulation, and
sharing of meaning through engaged interaction with artifacts”. This does not only
mean physical presence of these artefacts in the environment, but moreover that
the “occasion within a setting and a set of specific circumstances gives it meaning
and value” [Dourish, 2001]. Dourish further describes that “technology and prac-
tice cannot be separated from each other; they are coextensive and will coevolve.
Practices develop around technologies, and technologies are adapted and incorpo-
rated into practices.” [Dourish, 2001]. Therefore it is crucial to consider and
evaluate the ways of how technology is integrated into the everyday routines of
people. This is another argument of why prototyping of interactive applications

14

Tangible Bits
[Ishii and Ullmer, 2001]

Pad Prototype
[Weiser, 1996]

Digital Family Portrait
[Mynatt and Rowan, 2001]
[Consolvo et al., 2004]

Chapter 2 Background and Foundations

feedback can give users information about their co-workers presence and physi-
cal actions in the workplace. In their developed AudioAura system Mynatt et al.
[1998] use the active badge system [Want et al., 1992] to retrieve presence infor-
mation of the users, and sensors on the software side (e. g., calendar and email).
The implementation of the system requires the in-depth exploration of sensor con-
figurations and their placement, as well as the timing between sensors and audio
signals.

(a) The CareNet
system
[Consolvo
et al., 2004].

(b) Livewire installation at
Xerox PARC [Weiser, 1996].

(c) Water lamp of the TOWER
environment [Prinz and
Gross, 2001].

Figure 2.6: Ambient displays and remote awareness systems.

The visualisation projections of the ambientROOM [Ishii and Ullmer, 1997] are
also examples of ambient displays to provide awareness information. Initially,
Ishii and Ullmer [1997] have used the sound of rain to give a user ambient feed-
back of the traffic on a website (with a volume controlled playback of the rain
sound effects). They found out, however, that these sound effects distract users
from their work (as the sound is too intrusive), and therefore they decided to
evaluate an alternative design: the water ripple projection, as illustrated in Fig-
ure 2.5(b). An actuator element connected to a water tank can cause ripples on
the water (in this case, dependant on the web traffic). A light source is shining
through the water tank and is projecting the water surface onto the ceiling of the
ambientROOM. The result is a very calm and unintrusive ambient visualisation of
the awareness information in the periphery of the user’s attention.

The location-dependant information appliances [Elliot et al., 2007] enhance the
concept of ambient displays in two aspects. First, the information appliances are
aware of their location, and therefore appliance can provide diverse awareness
information depending on the location. Second, the appliances let the users eas-
ily move between background awareness information and foreground interaction
with detailed information [Buxton, 1995]. Users can easily change the infor-
mation source that is displayed on the ambient display (e. g., weather, traffic,
messages), and associate this information to an information appliance and/or a

20

Chapter 2 Background and Foundations

(a) Deployment of the displays in the home. (b) Scenarios of the Gate Reminder
system.

Figure 2.7: The Gate Reminder system: situated reminder displays in the home [Kim et al., 2004].

The system includes embedded displays (e. g., at the front door of the home as
seen in Figure 2.7(a) on the left side) that can display reminders for the family
members when they enter or leave the house. The displays receive messages from
the household members (e. g., via a cell phone; Figure 2.7(a) on the right side),
and they use RFID tags as well as video cameras and microphones to recognise the
person that is leaving or entering the building. They also use various motion and
door sensors to get detailed information about the activity at the house entrance,
and RFID tags for the detection of objects [Kim et al., 2004]. With these sensors
the Gate Reminder system can derive context information, so that it can provide
the useful reminders at the right time (e. g., when leaving) and place (e. g., at the
front door).

Figure 2.7(b) illustrates a series of scenarios of the Gate Reminder system. Users
can register objects (e. g., books) in the system to get reminded of taking these
objects with them when they leave at a particular date. They can also send mes-
sages and reminders with their mobile phone. In another scenario, a user sees the
weather report on one of the situated displays and takes the umbrella with her
when leaving [Kim et al., 2004]. When implementing the Gate Reminder system
to evaluate these scenarios, Kim et al. [2004] were facing several difficulties: de-
termine the intentions of a person (e. g., leaving, entering, directions), placement
of the sensors and displays, and the optimal timing of the reminders. In this case
the utilisation of a rapid prototyping toolkit would be helpful, as it can support the
evaluation of different implementations, and facilitate the testing of design alter-
natives. The developed Shared Phidgets toolkit facilitates the development with
distributed sensors and displays as they are used in the Gate Reminder system.

22

Gate Reminder
[Kim et al., 2004]

LiveWire
[Weiser and Brown, 1996]

ambientROOM
[Ishii and Ullmer, 2001]

LumiTouch
[Chang et al., 2001]

Marble Answering Machine
by Durell Bishop
[Crampton Smith, 1995]

HomeNote
[Sellen et al., 2006]

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Motivation Introduction

StickySpots
[Elliot et al., 2007]

mediaBLOCKS
[Ullmer and Ishii, 1997]

ActiveHydra
[Greenberg and Kuzuoka,
2000]

Chapter 2 Background and Foundations

(a) The ambientROOM overview. (b) Water lamp projections
as ambient
notification.

(c) Bottles as physical
handles to control
music and light.

Figure 2.5: The ambientROOM project of the Tangible Media Group [Ishii and Ullmer, 1997].

In short, with the tangible interaction Ishii and Ullmer introduced an influential
concept for the representation of digital information in the physical environment
and the interaction with these tangible bits. This research and the diverse exper-
imental prototypes were inspirations for this thesis research work and the devel-
opment of the Shared Phidgets toolkit.

2.3 Embodied Interaction

With embodied interaction Dourish [2001] introduces a concept that applies knowl-
edge and theories of philosophical and sociological research to the emerging vi-
sions of tangible computing. Dourish states that “embodiment is the property of our
engagement with the world that allows us to make it meaningful” [Dourish, 2001].
People are better in using systems that are meaningful to them and are strongly
connected to their social practices.

Dourish explains that “[e]mbodied interaction is the creation, manipulation, and
sharing of meaning through engaged interaction with artifacts”. This does not only
mean physical presence of these artefacts in the environment, but moreover that
the “occasion within a setting and a set of specific circumstances gives it meaning
and value” [Dourish, 2001]. Dourish further describes that “technology and prac-
tice cannot be separated from each other; they are coextensive and will coevolve.
Practices develop around technologies, and technologies are adapted and incorpo-
rated into practices.” [Dourish, 2001]. Therefore it is crucial to consider and
evaluate the ways of how technology is integrated into the everyday routines of
people. This is another argument of why prototyping of interactive applications

14

Tangible Bits
[Ishii and Ullmer, 2001]

Pad Prototype
[Weiser, 1996]

Digital Family Portrait
[Mynatt and Rowan, 2001]
[Consolvo et al., 2004]

Chapter 2 Background and Foundations

feedback can give users information about their co-workers presence and physi-
cal actions in the workplace. In their developed AudioAura system Mynatt et al.
[1998] use the active badge system [Want et al., 1992] to retrieve presence infor-
mation of the users, and sensors on the software side (e. g., calendar and email).
The implementation of the system requires the in-depth exploration of sensor con-
figurations and their placement, as well as the timing between sensors and audio
signals.

(a) The CareNet
system
[Consolvo
et al., 2004].

(b) Livewire installation at
Xerox PARC [Weiser, 1996].

(c) Water lamp of the TOWER
environment [Prinz and
Gross, 2001].

Figure 2.6: Ambient displays and remote awareness systems.

The visualisation projections of the ambientROOM [Ishii and Ullmer, 1997] are
also examples of ambient displays to provide awareness information. Initially,
Ishii and Ullmer [1997] have used the sound of rain to give a user ambient feed-
back of the traffic on a website (with a volume controlled playback of the rain
sound effects). They found out, however, that these sound effects distract users
from their work (as the sound is too intrusive), and therefore they decided to
evaluate an alternative design: the water ripple projection, as illustrated in Fig-
ure 2.5(b). An actuator element connected to a water tank can cause ripples on
the water (in this case, dependant on the web traffic). A light source is shining
through the water tank and is projecting the water surface onto the ceiling of the
ambientROOM. The result is a very calm and unintrusive ambient visualisation of
the awareness information in the periphery of the user’s attention.

The location-dependant information appliances [Elliot et al., 2007] enhance the
concept of ambient displays in two aspects. First, the information appliances are
aware of their location, and therefore appliance can provide diverse awareness
information depending on the location. Second, the appliances let the users eas-
ily move between background awareness information and foreground interaction
with detailed information [Buxton, 1995]. Users can easily change the infor-
mation source that is displayed on the ambient display (e. g., weather, traffic,
messages), and associate this information to an information appliance and/or a

20

Chapter 2 Background and Foundations

(a) Deployment of the displays in the home. (b) Scenarios of the Gate Reminder
system.

Figure 2.7: The Gate Reminder system: situated reminder displays in the home [Kim et al., 2004].

The system includes embedded displays (e. g., at the front door of the home as
seen in Figure 2.7(a) on the left side) that can display reminders for the family
members when they enter or leave the house. The displays receive messages from
the household members (e. g., via a cell phone; Figure 2.7(a) on the right side),
and they use RFID tags as well as video cameras and microphones to recognise the
person that is leaving or entering the building. They also use various motion and
door sensors to get detailed information about the activity at the house entrance,
and RFID tags for the detection of objects [Kim et al., 2004]. With these sensors
the Gate Reminder system can derive context information, so that it can provide
the useful reminders at the right time (e. g., when leaving) and place (e. g., at the
front door).

Figure 2.7(b) illustrates a series of scenarios of the Gate Reminder system. Users
can register objects (e. g., books) in the system to get reminded of taking these
objects with them when they leave at a particular date. They can also send mes-
sages and reminders with their mobile phone. In another scenario, a user sees the
weather report on one of the situated displays and takes the umbrella with her
when leaving [Kim et al., 2004]. When implementing the Gate Reminder system
to evaluate these scenarios, Kim et al. [2004] were facing several difficulties: de-
termine the intentions of a person (e. g., leaving, entering, directions), placement
of the sensors and displays, and the optimal timing of the reminders. In this case
the utilisation of a rapid prototyping toolkit would be helpful, as it can support the
evaluation of different implementations, and facilitate the testing of design alter-
natives. The developed Shared Phidgets toolkit facilitates the development with
distributed sensors and displays as they are used in the Gate Reminder system.

22

Gate Reminder
[Kim et al., 2004]

LiveWire
[Weiser and Brown, 1996]

ambientROOM
[Ishii and Ullmer, 2001]

LumiTouch
[Chang et al., 2001]

Marble Answering Machine
by Durell Bishop
[Crampton Smith, 1995]

HomeNote
[Sellen et al., 2006]

 Difficult to integrate physical hardware and build network
 Usually only local connected information appliances
 Single prototypes vs. iterative design cycle

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Related Work: Toolkits Introduction

Common Characteristics:

 Hardware integration

 Object-oriented programming

Drawbacks:

 Partially only for local hardware, and
not specifically designed for
distributed architectures

 Expert knowledge needed

 High-level assemblies

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Requirements Concept

1. Hide hardware implementation and provide shared access

2. Address low threshold and high ceiling [Myers et al., 2000]

3. Provide utilities for exploration and control

4. Support testing and debugging of distributed hardware and
information appliances

5. Build extensible architecture

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Building Prototypes Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Concept

Runtime Platform Developer Support Utilities

Shared Phidgets Toolkit

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

ConceptArchitecture Overview

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

ConceptArchitecture Overview

Runtime
Platform

Developer
Support

Utilities

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

ConceptArchitecture

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

ConceptArchitecture

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

ConceptArchitecture

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Concept

Runtime Platform Developer Support Utilities

Runtime Platform

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Physical Components
[Greenberg and Fitchett, 2001]

[Phidgets Inc., 2008]

Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Physical Components
[Greenberg and Fitchett, 2001]

[Phidgets Inc., 2008]

Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Physical Components
[Greenberg and Fitchett, 2001]

[Phidgets Inc., 2008]

Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Physical Components
[Greenberg and Fitchett, 2001]

[Phidgets Inc., 2008]

Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Data Model Concept
[Boyle and Greenberg, 2005]

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Hardware Data Model Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Hardware Data Model Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Hardware and Appliance Data Model Concept

 Path expressions to access the hardware data model directly:

Chapter 5 Toolkit Developer Library

If developers choose this implementation strategy, they receive notifications of up-
dated entries in the shared dictionary path hierarchy by adding subscription ob-
jects to their software. Furthermore, the developers need to add the correspond-
ing event handlers for the notifications, parse and interpret the incoming events,
and in turn modify entries in the shared data space to control actuator hardware.
With these techniques, developers can easily iterate through collections of shared
data model key/value pairs. Here, developers can utilise the pattern expressions
provided by the .NETWORKING toolkit that allow path description patterns similar
to regular expressions. Thus, the ’?’ character works as a placeholder for a single
path hierarchy level, whereas the ’*’ character can stand for multiple levels. For
instance, the following path expression generates matches for all entries of the
servo’s abstract model that control the current position of the motors.
/sharedphidgets/servo /?/ setservoposition /?/

Developers can iterate through these collections of dictionary entries to control
multiple hardware devices at the same time by altering the actuator control en-
tries (e. g., reset the position of all servo motors by setting the value to 0). Another
example of the pattern matching technique would be a collection of analog sen-
sor values that can be for instance useful when calculating the average value of a
collection of connected temperature sensors:
/sharedphidgets /*/ sensor /0/

Furthermore, the direct access to the shared data model allows the exploration of
the metadata entries. Developers can easily find collections of metadata entries
that match a particular pattern, for instance the geographical location entries of
all connected hardware devices.
/sharedphidgets /*/ metadata/geolocation/

Overall, the programming based on event notifications and entries in a shared
data space provides a powerful programming technique and has been previously
applied in toolkits for the rapid prototyping (e. g., in the iStuff toolkit [Ballagas
et al., 2003]). This technique, however, requires advanced programming knowl-
edge. Therefore, it does not provide a low threshold for average programmers
that learn the programming of information appliances. For this reason, the devel-
oper library includes a collection of high-level programming components that are
introduced in the next chapter.

5.1.2 Hardware Proxy Object API

The developer library includes a collection of proxy objects that encapsulate the
specific properties of each of the hardware elements (cf. Figure 5.1(b)). For

70

Chapter 5 Toolkit Developer Library

If developers choose this implementation strategy, they receive notifications of up-
dated entries in the shared dictionary path hierarchy by adding subscription ob-
jects to their software. Furthermore, the developers need to add the correspond-
ing event handlers for the notifications, parse and interpret the incoming events,
and in turn modify entries in the shared data space to control actuator hardware.
With these techniques, developers can easily iterate through collections of shared
data model key/value pairs. Here, developers can utilise the pattern expressions
provided by the .NETWORKING toolkit that allow path description patterns similar
to regular expressions. Thus, the ’?’ character works as a placeholder for a single
path hierarchy level, whereas the ’*’ character can stand for multiple levels. For
instance, the following path expression generates matches for all entries of the
servo’s abstract model that control the current position of the motors.
/sharedphidgets/servo /?/ setservoposition /?/

Developers can iterate through these collections of dictionary entries to control
multiple hardware devices at the same time by altering the actuator control en-
tries (e. g., reset the position of all servo motors by setting the value to 0). Another
example of the pattern matching technique would be a collection of analog sen-
sor values that can be for instance useful when calculating the average value of a
collection of connected temperature sensors:
/sharedphidgets /*/ sensor /0/

Furthermore, the direct access to the shared data model allows the exploration of
the metadata entries. Developers can easily find collections of metadata entries
that match a particular pattern, for instance the geographical location entries of
all connected hardware devices.
/sharedphidgets /*/ metadata/geolocation/

Overall, the programming based on event notifications and entries in a shared
data space provides a powerful programming technique and has been previously
applied in toolkits for the rapid prototyping (e. g., in the iStuff toolkit [Ballagas
et al., 2003]). This technique, however, requires advanced programming knowl-
edge. Therefore, it does not provide a low threshold for average programmers
that learn the programming of information appliances. For this reason, the devel-
oper library includes a collection of high-level programming components that are
introduced in the next chapter.

5.1.2 Hardware Proxy Object API

The developer library includes a collection of proxy objects that encapsulate the
specific properties of each of the hardware elements (cf. Figure 5.1(b)). For

70

Chapter 5 Toolkit Developer Library

If developers choose this implementation strategy, they receive notifications of up-
dated entries in the shared dictionary path hierarchy by adding subscription ob-
jects to their software. Furthermore, the developers need to add the correspond-
ing event handlers for the notifications, parse and interpret the incoming events,
and in turn modify entries in the shared data space to control actuator hardware.
With these techniques, developers can easily iterate through collections of shared
data model key/value pairs. Here, developers can utilise the pattern expressions
provided by the .NETWORKING toolkit that allow path description patterns similar
to regular expressions. Thus, the ’?’ character works as a placeholder for a single
path hierarchy level, whereas the ’*’ character can stand for multiple levels. For
instance, the following path expression generates matches for all entries of the
servo’s abstract model that control the current position of the motors.
/sharedphidgets/servo /?/ setservoposition /?/

Developers can iterate through these collections of dictionary entries to control
multiple hardware devices at the same time by altering the actuator control en-
tries (e. g., reset the position of all servo motors by setting the value to 0). Another
example of the pattern matching technique would be a collection of analog sen-
sor values that can be for instance useful when calculating the average value of a
collection of connected temperature sensors:
/sharedphidgets /*/ sensor /0/

Furthermore, the direct access to the shared data model allows the exploration of
the metadata entries. Developers can easily find collections of metadata entries
that match a particular pattern, for instance the geographical location entries of
all connected hardware devices.
/sharedphidgets /*/ metadata/geolocation/

Overall, the programming based on event notifications and entries in a shared
data space provides a powerful programming technique and has been previously
applied in toolkits for the rapid prototyping (e. g., in the iStuff toolkit [Ballagas
et al., 2003]). This technique, however, requires advanced programming knowl-
edge. Therefore, it does not provide a low threshold for average programmers
that learn the programming of information appliances. For this reason, the devel-
oper library includes a collection of high-level programming components that are
introduced in the next chapter.

5.1.2 Hardware Proxy Object API

The developer library includes a collection of proxy objects that encapsulate the
specific properties of each of the hardware elements (cf. Figure 5.1(b)). For

70

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Hardware and Appliance Data Model Concept

 Path expressions to access the hardware data model directly:

Chapter 4 Runtime Platform

at first the general concept of appliances and their representation in the shared
data space is introduced.

Similar to the representation of each hardware device in the abstract shared data
model, each appliance represents itself as a collection of entries in the path hierar-
chy of the shared dictionary, as listed in Figure 4.5. In order to create unique path
entries for each appliance the path expressions include a globally unique identifier
(GUID)3 [Leach et al., 2005]. The entries of each appliance include information
about the name, a connection timestamp, and IP address (shown in lines 1–3 of
Figure 4.5), as well as a listing of all hardware sensors and actuators that are ad-
dressed from this appliance (cf. lines 5–9 of Figure 4.5). The latter is important
for the dynamic configuration of the appliances: by setting the /externalseri-
al/ subpath of any of the registered devices of the appliance, it is possible to map
this implementation to a different hardware device of the same type. Further-
more, the listing of the addressed hardware devices also allows the observation
of appliances and their incoming and outgoing events; this is fundamental for the
observer utilities introduced in Chapter 6.

Appliances can be implemented as aggregators or interpreters of incoming sensor
events and therewith can provide a similar functionality as the Aggregates intro-
duced by Dey [2000] and Salber et al. [1999]. Therefore, the appliance’s data
model also includes entries to publish high-level events. The entries of the /pro-
cessing/ subpath comprise all these events of the appliance (cf. lines 11 and 12
of Figure 4.5). These high-level values can be for instance results of a calculation
based on various incoming sensor events or an identified pattern in an observed
series of sensor values. Any client that is connected to the shared data space can
then register to receive notifications about changes of these high-level values.

1 /appliance/<guid >/ appliancename = Sticky Spots
2 /appliance/<guid >/ timestamp = 20/10/2007 04:56:45
3 /appliance/<guid >/ip = 192.168.178.20
4

5 /appliance/<guid >/ components/<cid >/type = rfid
6 /appliance/<guid >/ components/<cid >/ serial = 2967
7 /appliance/<guid >/ components/<cid >/ externalserial = 2967
8 /appliance/<guid >/ components/<cid >/path = /sharedphidgets/rfid /2967/
9 /appliance/<guid >/ components/<cid >/ timestamp = 20/10/2007 05:22:07

10

11 /appliance/<guid >/ processing/<subpath1 > = 42
12 /appliance/<guid >/ processing/<subpath2 > = True

Figure 4.5: Entries of the abstract appliance data model (<guid> = globally unique identification
number for appliances, <cid> = unique component identification.

3 The GUID is a randomly created 128-bit number that can be used as unique identification of
software objects, as the total number of possible keys is so large that the probability of two
identical generated keys is very small [Leach et al., 2005].

57

Chapter 5 Toolkit Developer Library

If developers choose this implementation strategy, they receive notifications of up-
dated entries in the shared dictionary path hierarchy by adding subscription ob-
jects to their software. Furthermore, the developers need to add the correspond-
ing event handlers for the notifications, parse and interpret the incoming events,
and in turn modify entries in the shared data space to control actuator hardware.
With these techniques, developers can easily iterate through collections of shared
data model key/value pairs. Here, developers can utilise the pattern expressions
provided by the .NETWORKING toolkit that allow path description patterns similar
to regular expressions. Thus, the ’?’ character works as a placeholder for a single
path hierarchy level, whereas the ’*’ character can stand for multiple levels. For
instance, the following path expression generates matches for all entries of the
servo’s abstract model that control the current position of the motors.
/sharedphidgets/servo /?/ setservoposition /?/

Developers can iterate through these collections of dictionary entries to control
multiple hardware devices at the same time by altering the actuator control en-
tries (e. g., reset the position of all servo motors by setting the value to 0). Another
example of the pattern matching technique would be a collection of analog sen-
sor values that can be for instance useful when calculating the average value of a
collection of connected temperature sensors:
/sharedphidgets /*/ sensor /0/

Furthermore, the direct access to the shared data model allows the exploration of
the metadata entries. Developers can easily find collections of metadata entries
that match a particular pattern, for instance the geographical location entries of
all connected hardware devices.
/sharedphidgets /*/ metadata/geolocation/

Overall, the programming based on event notifications and entries in a shared
data space provides a powerful programming technique and has been previously
applied in toolkits for the rapid prototyping (e. g., in the iStuff toolkit [Ballagas
et al., 2003]). This technique, however, requires advanced programming knowl-
edge. Therefore, it does not provide a low threshold for average programmers
that learn the programming of information appliances. For this reason, the devel-
oper library includes a collection of high-level programming components that are
introduced in the next chapter.

5.1.2 Hardware Proxy Object API

The developer library includes a collection of proxy objects that encapsulate the
specific properties of each of the hardware elements (cf. Figure 5.1(b)). For

70

Chapter 5 Toolkit Developer Library

If developers choose this implementation strategy, they receive notifications of up-
dated entries in the shared dictionary path hierarchy by adding subscription ob-
jects to their software. Furthermore, the developers need to add the correspond-
ing event handlers for the notifications, parse and interpret the incoming events,
and in turn modify entries in the shared data space to control actuator hardware.
With these techniques, developers can easily iterate through collections of shared
data model key/value pairs. Here, developers can utilise the pattern expressions
provided by the .NETWORKING toolkit that allow path description patterns similar
to regular expressions. Thus, the ’?’ character works as a placeholder for a single
path hierarchy level, whereas the ’*’ character can stand for multiple levels. For
instance, the following path expression generates matches for all entries of the
servo’s abstract model that control the current position of the motors.
/sharedphidgets/servo /?/ setservoposition /?/

Developers can iterate through these collections of dictionary entries to control
multiple hardware devices at the same time by altering the actuator control en-
tries (e. g., reset the position of all servo motors by setting the value to 0). Another
example of the pattern matching technique would be a collection of analog sen-
sor values that can be for instance useful when calculating the average value of a
collection of connected temperature sensors:
/sharedphidgets /*/ sensor /0/

Furthermore, the direct access to the shared data model allows the exploration of
the metadata entries. Developers can easily find collections of metadata entries
that match a particular pattern, for instance the geographical location entries of
all connected hardware devices.
/sharedphidgets /*/ metadata/geolocation/

Overall, the programming based on event notifications and entries in a shared
data space provides a powerful programming technique and has been previously
applied in toolkits for the rapid prototyping (e. g., in the iStuff toolkit [Ballagas
et al., 2003]). This technique, however, requires advanced programming knowl-
edge. Therefore, it does not provide a low threshold for average programmers
that learn the programming of information appliances. For this reason, the devel-
oper library includes a collection of high-level programming components that are
introduced in the next chapter.

5.1.2 Hardware Proxy Object API

The developer library includes a collection of proxy objects that encapsulate the
specific properties of each of the hardware elements (cf. Figure 5.1(b)). For

70

Chapter 5 Toolkit Developer Library

If developers choose this implementation strategy, they receive notifications of up-
dated entries in the shared dictionary path hierarchy by adding subscription ob-
jects to their software. Furthermore, the developers need to add the correspond-
ing event handlers for the notifications, parse and interpret the incoming events,
and in turn modify entries in the shared data space to control actuator hardware.
With these techniques, developers can easily iterate through collections of shared
data model key/value pairs. Here, developers can utilise the pattern expressions
provided by the .NETWORKING toolkit that allow path description patterns similar
to regular expressions. Thus, the ’?’ character works as a placeholder for a single
path hierarchy level, whereas the ’*’ character can stand for multiple levels. For
instance, the following path expression generates matches for all entries of the
servo’s abstract model that control the current position of the motors.
/sharedphidgets/servo /?/ setservoposition /?/

Developers can iterate through these collections of dictionary entries to control
multiple hardware devices at the same time by altering the actuator control en-
tries (e. g., reset the position of all servo motors by setting the value to 0). Another
example of the pattern matching technique would be a collection of analog sen-
sor values that can be for instance useful when calculating the average value of a
collection of connected temperature sensors:
/sharedphidgets /*/ sensor /0/

Furthermore, the direct access to the shared data model allows the exploration of
the metadata entries. Developers can easily find collections of metadata entries
that match a particular pattern, for instance the geographical location entries of
all connected hardware devices.
/sharedphidgets /*/ metadata/geolocation/

Overall, the programming based on event notifications and entries in a shared
data space provides a powerful programming technique and has been previously
applied in toolkits for the rapid prototyping (e. g., in the iStuff toolkit [Ballagas
et al., 2003]). This technique, however, requires advanced programming knowl-
edge. Therefore, it does not provide a low threshold for average programmers
that learn the programming of information appliances. For this reason, the devel-
oper library includes a collection of high-level programming components that are
introduced in the next chapter.

5.1.2 Hardware Proxy Object API

The developer library includes a collection of proxy objects that encapsulate the
specific properties of each of the hardware elements (cf. Figure 5.1(b)). For

70

 Appliance data model:

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Concept

Runtime Platform Developer Support Utilities

Developer Support

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Development Support Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Development Support Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Development Support Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Development Support Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Interface Skins Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Interface Skins Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Interface Skins Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Concept

Runtime Platform Developer Support Utilities

Utilities

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Utilities Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Utilities Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Simulations Concept

Simulated
Hardware D

Simulated
Hardware C

Wizard of
Oz Controls

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Simulations Concept

Simulated
Hardware D

Simulated
Hardware C

Wizard of
Oz Controls

Simulation
Recording

and
Playback

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Utilities: Visualisation Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Utilities: Visualisation Concept

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

 Microsoft Windows platform (2000, XP,
Vista, Server 2003, Server 2008)

 .NET framework 2.0

 Language: C# (supported are furthermore
J#, Visual Basic, and C++)

 Integration into VisualStudio IDE

Implementation Overview Implementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Plug-in Architecture Implementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Developer Library Implementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

IDE Integration Implementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

IDE Integration Implementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Utilities Implementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Utilities Implementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Utilities Implementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Utilities Implementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Visualisation
Chapter 7 Case Studies and Discussion

Figure 7.8: Infrastructure visualisation of the distributed hardware.

The implemented source code of the appliance is shown in Figure 7.9. At first,
the callback method for the sensor uses a separate method to determine the cur-
rent availability status. In this Aggregate method (lines 14-20 in Figure 7.9), the
sensor values are interpreted and the method returns the estimated availability
status. This is then used to change the servo position and the display text ac-
cordingly (lines 8 and 9 in Figure 7.9). Finally, the appliance is also adding a
high-level entry to the shared data space (line 10 in Figure 7.9).

Discussion

While this prototype is only a simple implementation of an awareness display,
it highlights the process of aggregating sensor values to high-level interpretations
[Salber et al., 1999; Dey, 2000] and indicating awareness information (abstracted
from the sensors) to remote located actuators. With it, this example comprises
concepts of the Physical but Digital Surrogates [Greenberg and Kuzuoka, 2001]
and the Door Mouse [Buxton, 1997]. The example appliance illustrated the pro-
cessing of sensor data, interpretation of the raw sensor values, and deriving con-
text information (i. e., the presence of a person). This information is easily pub-
lished to the shared data model, and therefore it is available as high-level event
to all other connected appliances.

Because the toolkit facilitates the access to the sensor information (local and re-
mote located), developers can explore the possible aggregations and interpreta-
tions of sensor data, to derive high-level context information. These can be im-
portant steps to evaluate the applicability of such an appliance. Especially when

111

Implementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Simulations Implementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

EvaluationCase Studies

 Evaluation by applying the
toolkit for rapid prototyping

 Utilised in two HCI courses as
well as academic and
industrial research labs

 10 thesis case study
information appliances

Chapter 7 Case Studies and Discussion

[Kim et al., 2004]. The motivation behind this example is to illustrate the rapid
prototyping of such a location-based messaging system, and to highlight possible
extensions of the first prototype.

Implementation

The prototype1 implements the following functionality: users are able to send
messages to situated displays from their mobile phones by using text messages, as
illustrated in Figure 7.1(a). Alternatively they can use a graphical software front
end (cf. Figure 7.1(b)) to write or draw messages and choose a display from a list
to send the message to (similar as in the Sticky Spots project [Elliot et al., 2007]).
The message displays are implemented with the wireless graphic LCD, and can
be easily distributed across multiple rooms in the home; for instance near the
front door as illustrated in Figure 7.1(c). The software organises the routing of
messages to the graphic LC displays. Thus, this system implements a first iteration
of a prototype that allows situated messaging.

(a) Sending messages
from phones.

(b) Writing messages. (c) Situated messaging display.

Figure 7.1: Location-based messaging appliance.

In the following, three implementation aspects of the system are briefly described:
the dynamic integration of distributed displays, the handling of incoming text mes-
sages, and the forwarding of messages to displays. The system dynamically inte-
grates new connected graphic LC displays into the application by using the Attach
event of the DeviceManager. The event handler method checks for the correct
device type (line 3 in Figure 7.2) and the specification of two metadata tags: ap-
pliance and location (lines 6 and 7 in Figure 7.2). The appliance metadata entry
tags all hardware devices that are assigned to this appliance, while the location
metadata entries specify the location of the display (and these names are added to

1 Development project: LocationBasedMessaging [Marquardt, 2008].

104

Chapter 7 Case Studies and Discussion

the digital information (that usually resides on the desktop computer) into the ev-
eryday environment. The easy to use API and the encapsulated software building
blocks allowed the rapid development of a prototype as well as iterations in the
design to experiment with various forms of tangible interaction.

7.1.3 Remote and Ambient Awareness

This third introduced appliance4 is an example of an ambient display that provides
awareness information about a person at a distant location. For instance, the
awareness display could be situated in the home of a family and indicates if the
working parent is sitting at her desk, is around in the office, or is absent.

Implementation

Figure 7.7: Awareness appliance implementa-
tion with an ambient display.

The first part of the appliance is lo-
cated in the office room and includes
a proximity sensor near the desk to de-
termine if someone sits at the desk. A
force sensor at the door observes if the
door is opened or closed. These two
sensor values are utilised to estimate
the availability of the working person.
The counter part of the appliance is
illustrated in Figure 7.7 and includes
a figurine representation mounted on
top of a servo motor. The position of
the figurine can represent the availabil-
ity status (facing the front = Available,
side = Around, back = Absent). The
current status is furthermore displayed on a connected text LC display.

The infrastructure visualisation utility shown in Figure 7.8 is an important utility
to support the developer with the integration of the remote located hardware sen-
sors and displays. By means of the visualisation developers can get an overview of
existing hardware (the markers in the centre of Figure 7.8), review the current ap-
pliance configuration (the lines between the markers in the centre of Figure 7.8),
and control or view details of the hardware by using the interface skins (left and
right side of Figure 7.8).

4 Development project: AmbientAwareness [Marquardt, 2008].

110

Chapter 7 Case Studies and Discussion

[Kim et al., 2004]. The motivation behind this example is to illustrate the rapid
prototyping of such a location-based messaging system, and to highlight possible
extensions of the first prototype.

Implementation

The prototype1 implements the following functionality: users are able to send
messages to situated displays from their mobile phones by using text messages, as
illustrated in Figure 7.1(a). Alternatively they can use a graphical software front
end (cf. Figure 7.1(b)) to write or draw messages and choose a display from a list
to send the message to (similar as in the Sticky Spots project [Elliot et al., 2007]).
The message displays are implemented with the wireless graphic LCD, and can
be easily distributed across multiple rooms in the home; for instance near the
front door as illustrated in Figure 7.1(c). The software organises the routing of
messages to the graphic LC displays. Thus, this system implements a first iteration
of a prototype that allows situated messaging.

(a) Sending messages
from phones.

(b) Writing messages. (c) Situated messaging display.

Figure 7.1: Location-based messaging appliance.

In the following, three implementation aspects of the system are briefly described:
the dynamic integration of distributed displays, the handling of incoming text mes-
sages, and the forwarding of messages to displays. The system dynamically inte-
grates new connected graphic LC displays into the application by using the Attach
event of the DeviceManager. The event handler method checks for the correct
device type (line 3 in Figure 7.2) and the specification of two metadata tags: ap-
pliance and location (lines 6 and 7 in Figure 7.2). The appliance metadata entry
tags all hardware devices that are assigned to this appliance, while the location
metadata entries specify the location of the display (and these names are added to

1 Development project: LocationBasedMessaging [Marquardt, 2008].

104

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

EvaluationCase Studies

 Tangible digital media

 Location-based messaging

 Ambient displays and awareness

 Location-dependent object controller

 Augmented map

 Assigning digital metadata

 Sensor processing

 LumiTouch reimplementation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

EvaluationDiscussion

 Applicability of the toolkit
 Ease of use and low threshold
 Advanced programming and high ceiling
 Performance, scalability, latency, reliability
 Usability of tangible user interfaces

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Future Work

 Further evaluations: developers, end users
 Library extensions: hardware, filters, skins
 Sensor data processing: high-level events
 Utilities and visualisation: history, advanced interaction

Evaluation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Summary

Nicolai Marquardt – Diplom Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

 Introduction of tangible user interfaces
 Motivation and research overview

 Requirements
 Concept: Runtime Platform, Development Library, Utilities

 Implementation details
 Using connector, library, utilities

 Case studies and prototyping
 Discussion

Evaluation

References I

CHANG, A., RESNER, B., KOERNER, B., WANG, X., AND ISHII, H. 2001. LumiTouch: An Emotional Communication Device. In Extended Abstracts
of the 19th ACM Conference on Human Factors in Computing Systems - CHI 2001 (Seattle, Washington, USA). ACM Press, New York, NY,
USA, 313–314.

CRAMPTON SMITH, G. 1995. The Hand That Rocks the Cradle. I.D.

CONSOLVO, S., ROESSLER, P., AND SHELTON, B. E. 2004. The CareNet Display: Lessons Learned from an In Home Evaluation of an Ambient
Display. In Proceedings of the Sixth International Conference on Ubiquitous Computing - UbiComp 2004 (Nottingham, UK), N. Davies, E. D.
Mynatt, and I. Siio, Eds. Lecture Notes in Computer Science, vol. 3205. Springer, Nottingham, UK, 1–17.

ELLIOT, K., NEUSTAEDTER, C., AND GREENBERG, S. 2007. StickySpots: Using Location to Embed Technology in the Social Practices of the
Home. In Proceedings of the 1st International Conference on Tangible and Embedded Interaction - TEI 2007 (Baton Rouge, LA, USA). ACM
Press, New York, NY, USA, 79–86.

GREENBERG, S. AND FITCHETT, C. 2001. Phidgets: Easy Development of Physical Interfaces Through Physical Widgets. In Proceedings of the
14th Annual ACM Symposium on User Interface Software and Technology - UIST 2001 (Orlando, Florida, USA). ACM Press, New York, NY,
USA, 209–218.

GREENBERG, S. AND KUZUOKA, H. 2001. Using Digital but Physical Surrogates to Mediate Awareness, Communication and Privacy in Media
Spaces. In Personal Technologies. Elsevier.

ISHII, H. AND ULLMER, B. 1997. Tangible Bits: Towards Seamless Interfaces Between People, Bits and Atoms. In Proceedings of the ACM
Conference on Human Factors in Computing Systems - CHI 1997 (Atlanta, Georgia, USA). ACM Press, New York, NY, USA, 234–241.

KIM, S. W., KIM, M. C., PARK, S. H., JIN, Y. K., AND CHOI, W. S. 2004. Gate Reminder: A Design Case of a Smart Reminder. In Proceedings of
the 5th ACM Conference on Designing Interactive Systems - DIS 2004 (Cambridge, Massachusetts, USA). ACM Press, New York, NY, USA,
81–90.

MARQUARDT, N. 2008. Developer Toolkit and Utilities for Rapidly Prototyping Distributed Physical User Interfaces. Diploma Thesis. Bauhaus-
University Weimar.

MYERS, B. A., HUDSON, S. E., AND PAUSCH, R. 2000. Past, Present, and Future of User Interface Software Tools. ACM Transactions on
Computer-Human Interaction 7, 1, 3–28.

Evaluation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

References II

MYNATT, E. D., ROWAN, J., JACOBS, A., AND CRAIGHILL, S. 2001. Digital Family Portraits: Supporting Peace of Mind for Extended Family
Members. In Proceedings of the ACM Conference on Human Factors in Computing Systems - CHI 2001 (Seattle, Washington, USA). ACM
Press, New York, NY, USA, 333–340.

PHIDGETS INC. 2008. Phidgets ProductWebsite. http://www.phidgets.com. Website last visited on May 4, 2008.

SELLEN, A., HARPER, R., EARDLEY, R., IZADI, S., REGAN, T., TAYLOR, A. S., AND WOOD, K. R. 2006. HomeNote: Supporting Situated Messaging
in the Home. In Proceedings of the 20th ACM Conference on Computer Supported Cooperative Work - CSCW 2006 (Banff, Alberta, Canada).
ACM Press, New York, NY, USA, 383–392.

ULLMER, B. AND ISHII, H. 1997. The metaDESK: Models and Prototypes for Tangible User Interfaces. In Proceedings of the 10th Annual ACM
Symposium on User Interface Software and Technology - UIST 1997 (Banff, Alberta, Canada). ACM Press, New York, NY, USA, 223–232.

WEISER, M. 1991. The Computer for the 21st Century. Scientific American 265, 3 (September), 66–75.

WEISER, M. 1996. Ubiquitous Computing Website at XEROX PARC. http://sandbox.xerox.com/ubicomp/.
Website last visited on February 2, 2008.

WEISER, M. AND BROWN, J. S. 1996. Designing Calm Technology. PowerGrid Journal 1, 1.

Evaluation

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Thank you for your attention!

Nicolai Marquardt – Diploma Thesis Defence Bauhaus-University Weimar, Cooperative Media Lab

Nicolai Marquardt
Diploma Thesis Defence
May 2008

Cooperative Media Lab - Bauhaus-University Weimar
GroupLab - University of Calgary

