CollaborationBus:
An Editor for the Easy Configuration of Ubiquitous Computing Environments

Tom Gross, Nicolai Marquardt
Faculty of Media
Bauhaus-University Weimar
Bauhausstr. 11
99423 Weimar, Germany
<firstname.lasthame>(at)medien.uni-weimar.de

Abstract

Early sensor-based infrastructures were often
developed by experts with a thorough knowledge of base
technology for sensing information, for processing the
captured data, and for adapting the system’s behaviour
accordingly. In this paper we introduce the
CollaborationBus application: a graphical editor that
provides abstractions from base technology and thereby
allows experts as well as non-experts to configure
Ubiquitous Computing environments. By composing
pipelines users can easily specify the information flows
from selected sensors, via optional filters for processing
the sensor data, to actuators changing the system
behaviour according to their wishes. Users can compose
pipelines for both home and work environments. An
integrated sharing mechanism allows them to share their
own compositions and to reuse and build upon others’
compositions. Real-time visualisations help them
understand the information flows through their pipelines.
In this paper we present the concept and implementation
of the CollaborationBus application.

1 Introduction

Creating, maintaining, and adapting sensor-based
infrastructures in general requires a thorough knowledge of
base technology for sensing data, for processing the
captured data, and for adapting the system’s behaviour
accordingly [3, 10, 23, 24, 26]. In this paper we argue
that besides experts also non-experts—that is, users who
have some basic knowledge of application programming,
but do not necessarily have expert knowledge in sensor
hardware, wired and wireless networking, and data
processing algorithms—should be able to create,
maintain, and adapt configurations of Ubiquitous
Computing environments.

There are some research projects providing easy-to-use
configuration interfaces for non-expert users to create
sensor-based Ubiquitous Computing environments, yet
they generally target at configuration for the private home

[9, 15, 18, 25]. Furthermore, most systems lack
integrated facilities for the collaborative exchange of users’
configurations. Only some systems—typically complex
configuration tools [3, 17]—provide enhanced
visualisations of the data flow and sensor-network data [4]
to support users while creating or configuring
environments.

In this paper we introduce CollaborationBus: a
graphical editor that provides adequate abstractions from
base technology and thereby allows non-expert users to
easily configure Ubiquitous Computing environments.
CollaborationBus is based on three main
concepts —pipeline compositions, integrated sharing
mechanisms, and real-time visualisations —which per se
and in combination go beyond existing approaches:

* The pipeline compositions enable users to easily
specify the information flows through Ubiquitous
Computing environments from selected sensors, via
optional filters for processing the sensor data, to
actuators changing the system behaviour according to
their wishes. Whenever the sensors capture values that
are in the range indicated by the users, the actuators
perform the specified actions.

* The integrated sharing mechanisms allow users to
share their own pipeline compositions with other
users. In an analogous manner they can add others’
compositions to their own repository, and build new
compositions based on these compositions.

* The real-time visualisations display relations between
incoming and outgoing events, and let the user
interactively keep track of and adjust the information
flow through their pipelines. They help the users
understand the information flow, which can become
quite complex sets of sensors, filters, and actuators.

In the remainder of this paper we present the concept
and implementation of the CollaborationBus application.
First, we develop scenarios of configurations for
Ubiquitous Computing environments and derive
requirements. Then we present the concept and
implementation of CollaborationBus and describe its user
interface. We continue with a discussion of related work.
Finally, we report on early user feedback, draw
conclusions, and sketch future work.

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)

0-7695-2784-1/07 $20.00 © 2007 IEEE

IEE I-'

COMPUTER

SOCIETY

2 Requirements

In this section we develop scenarios of configurations
for Ubiquitous Computing environments that users might
want to develop and maintain, and we derive requirements
for the CollaborationBus editor.

2.1 Application Scenarios

Basically, users should be able to configure Ubiquitous
Computing environments in their private homes as well
as in their workplaces, as exemplified below.

Smart Telephone. In a first scenario users wish to
control the sound volume of their music players and start
their calendar application in dependence of their office
telephones’ state. A simple sensor attached to the
telephone detects whether the phone receiver is picked up
and serves as the first input source of this pipeline. The
second input source checks whether the user is currently
logged in at the office computer. The condition modules
check the telephone sensor state as well as the login
information. Finally, the user wants to specify the desired
information flow: if the pipeline detects that the phone is
used, the volume of the computer (e.g., an AppleScript
application is started to mute the volume of the Mac) and
the sound system (e.g., a sensor board sends out infrared
commands) should be muted, and the user’s calendar
application should be started so that the user can input
new appointments during the phone call (e.g., another
AppleScript application starts the iCal application). When
the phone call ends, the original state should be re-
established after a few seconds.

Personal Notification Selection. In a second scenario,
users want to get information about the current activities
of their remote co-workers and friends. Users can add a
state sensor to the instant messaging application as well
as movement and noise sensors as sources of their
pipeline. Then users can specify queries with keyword
filters that analyse the sensor data of the instant
messaging sensor and check if they match the names of
their remote co-workers or project descriptions. As
actuators the users might wish to specify that all events
are collected and sent as a daily email summary once a
day. Additionally, if the number of messages containing
the keywords reaches a specified occurrence threshold, the
system additionally sends the users an immediate
summary message to their mobile phones via an SMS
gateway (a short message service sending a message to the
mobile phone).

Informal Group Awareness. In a final scenario, the
users of two remote computer science labs want an
information channel of the lab activities as RSS feed that
can be integrated into tickertape displays or screensavers.
They wish to receive information on the activities at the
other site. They create a pipeline composition and add the
following information sources as input sources: the
current lab members logged in on the server and in the
instant messaging system, the current CVS submissions

of the developers, the average values of the movement and
noise sensors and the current temperature of the two labs
and the coffee lounge. As actuator component for the
output they add an RSS feed generator and publish the
RSS file to a server. Now, the lab members can access
this RSS feed and add it to their favourite notification
display (e.g., a Web browser, or a screensaver). This
summary of group events and activities can help users to
find out more about the whole development team, and can
facilitate the informal and spontaneous communication
between the colleagues.

2.2 Functional Requirements

The following functional requirements were derived
from various application scenarios that we developed in
our research group (three of which were described above),
and from a detailed study of related work (some examples
of related work are presented in section 6 below):

* Provide adequate abstraction for various applications
domains: Configuration editors should allow users to
integrate a variety of software and hardware sensors
capturing information, and software and hardware
actuators adapting the behaviour of the environment
accordingly. The integration of existing and new
sensors and actuators should be easy. Various
configurations should be possible—ranging from
configurations for home environments as well as for
work environments.

* Support diverse users with heterogeneous knowledge,
ranging from novice to experts: Configuration editors
should facilitate the immediate utilisation. For this
purpose, they should provide a pre-defined library of
common configurations and configuration assistants
that allow the users—especially beginners—to use the
editor immediately and to incrementally explore its
functionality. Additionally, configuration editors
should offer guided compositions. Therefore, the user
interface and the functionality provided should be
restricted to essential functions; functions that are not
adequate or not needed should be disabled (e.g., if a
sensor captures data in the form of text strings,
calculations such as average should be disabled).
Finally, configuration editors should provide details on
demand. For this purpose —especially more experienced
users—should be able move from more abstract to
more fine-grained layers, and to see and manipulate
details.

* Support the exchange of configurations among users:
Configuration editors should allow the sharing of
configurations among users. The sharing of
configurations is useful for workgroups and friends,
because it allows users to build on the results of other
users, and gives less experienced users the chance to
benefit of the knowledge and outcomes of more
experienced users.

Subsequently we present the concept and
implementation of CollaborationBus addressing these
functional requirements.

IEE |-:

COMPUTER
SOCIETY

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

3 Concept

In this section we describe the key concepts of the
CollaborationBus editor.

3.1 Generic Approach

CollaborationBus works across multiple applications
domains, temporal patterns, and complexity patterns.

Application Domains. Sensor- and actuator-based
environments in the private home differ from those in the
work domain in the use of software and hardware sensors.
CollaborationBus supports the creation and maintenance
of environments in the workplace and at home.

Temporal Patterns. In any application domain various
patterns with regard to capturing data and starting actuators
can be identified: recurrent, permanent (e.g., ongoing data
collection); recurrent, occasionally (e.g., depending on
day-time, day of the week); and one-time (e.g., call-back if
the required person is reachable). CollaborationBus
supports any of these temporal patterns.

Complexity Patterns. Each setting can have a specific
complexity pattern such as: one sensor, one actuator (e.g.,
one binary sensor controls one actuator); sensor, filters,
actuator (e.g., only react to specific values of a
temperature sensor); multiple parallel sensors, filters, and
actuators (e.g., create summaries of various sensor
sources, control a set of actuators); and complex network
of components (e.g., determine the current work context
or mood of a person). CollaborationBus supports all
complexity patterns, except for complex networks that are
too complex to be represented in a graphical editor and
require programming by experts.

3.2 Pipeline Metaphor

CollaborationBus handles relations between sensor and
actuators with a pipeline metaphor.

Pipelines are compositions that connect and forward
event data and commands between at least one sensor and
one actuator component, and optionally filter components
for processing sensor values between them. They can be
nested: parallel sub-pipelines as logical or condition;
sequences of sensor sources as logical anp condition; and
negations as logical NoT condition.

Sensors are the sources of any event in a pipeline.
They can be software sensors (e.g., sensors for unread
emails, mouse activity, shared workspace events, open
applications) or hardware sensors (e.g., sensors for
temperature, movement, light intensity).

Actuators are at the sink-side of the pipeline. Software
actuators influence the computer system (e.g., display
screen messages, start applications), while hardware
actuators affect the real environment of the users (e.g.,
activate light sources or devices).

Filters represent single conditions or transformations
and generate data of particular formats (e.g., Integer,

Boolean, String). Filter types are: universal (e.g., count
number of event occurrence, create event summary
reports); numerical (e.g., determine numeric threshold,
interpolation, average); string (e.g., search for specified
keywords); binary (e.g., create negation, conjunction); and
transformations (e.g., convert numeric value to string
message, binary value to numeric). The filter components
include a variety of transformation methods (e.g., for
generating a SMS a string message can be entered, and the
values of the respective sensors can be attached).

With CollaborationBus users can rapidly connect local
sensors and actuators or sensors and actuators from remote
locations and build new configurations.

3.3 Diverse Users

CollaborationBus works for users with diverse levels of
technical background. Novice users with some basic
knowledge of application programming can start using
CollaborationBus by loading and adapting pre-configured
environment configurations that are part of the
CollaborationBus distribution. Feasibility checks
automatically deactivate inadequate operations (e.g.,
average calculations on non-numeric data). More
experienced users can create their own environment
configurations, and execute them in order to learn more
about intra-pipeline event forwarding. Expert users can
create the envisioned system-behaviour by developing the
required software in a high-level programming language
using toolkits, platforms, libraries, and development and
debugging environments to facilitate and speed up the
development process. Taking these diverse user types into
consideration is a core concept of CollaborationBus.

3.4 Collaborative Sharing

Three types of sharing of compositions are possible:
Sensor and event sharing allows users to either share
events of their own sensors or processed event data of their
filters. Actuator sharing allows users to share the control
of a personal actuator with other users, so that other users
can send commands to the actuator and control the system
behaviour. And, pipeline sharing allows users to share
complete pipeline compositions with others.

With all sharing methods security and privacy are
maintained through abstraction and access control. Users
can choose to only share abstract templates—so a
composition contains the configuration of all filter
components, but the original sensors and actuators are not
shared (other users cannot see the creator’s event data
captured by her software and hardware sensors). Other
users can then insert their own sensors in the placeholders
at the beginning of the pipeline composition, and their
own actuators at the end. This lets them use the
knowledge of the processing filter components of the
composition, while at the same time the users who share
pipeline compositions preserve privacy of their personal
data.

IEE |-:

COMPUTER
SOCIETY

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

4 Implementation

In this section we describe the implementation of
CollaborationBus: software architecture and class diagram.

4.1 CollaborationBus Software Architecture

Figure 1 provides a schematic overview of software
architecture of CollaborationBus. All sensor and actuator
components are connected to the SensBase infrastructure,
which provides adapters for the connection of sensors and
actuators, a central registry of all connected components
and a database for persistent storage of sensor event data.
SensBase was implemented with the Sens-ation platform
[13]. SensBase provides inference engines that can
interpret, aggregate, and transform sensor values. A
variety of gateways (e.g., Web Service, XML-RPC,
Sockets) provide interfaces for the retrieval of sensor
descriptions, event data, actuators, and so forth.

The CBServer uses these gateways to register for the
sensor values needed for the users’ pipeline compositions.
Each time changes occur at one of the connected sensors,
the SensBase server forwards a change event to the
CBServer. These events are forwarded to the adequate
components inside of each pipeline composition. The
compositions are inside of the Personal Repository of
each user and include the complete description of all
assembled components.

Personal and shared repository are serialised in XML
format, for platform independency and easy exchange of
pipeline composition descriptions. The CBServer can
serialise and de-serialise XML descriptions, and validate
and process descriptions. An example of a Personal
Repository encoded in XML looks like the following:

SensBase

Sensorand
Gateways: € > " Actuator
? Connection
Web Services, §
Sockets, Ed
XML-RPC, o XML
Gl S Serialization
3 an
a Deserialization
Inference s
Engines XML
Validation and
Sensor and Processing
Actuator
— Regist
sy Directory of
7 f) Components:
Sensors | 3 Data- ‘ Sensors,
L S base f Actuators and
I f Filters
————4 =
2
fal Sensor and
| Actuators S Actuator
1 Adapters

Figure 1. CollaborationBus schematic overview.

CBServer

Collaboration Bus Remote Server

Personal Repository

Pipeline Compositions User A

Pipeline Compositions User B

Pipeline Compositions User N

Shared Repository

Shared Pipeline Compositions. i Bhlly LB

<personalRepository>
<pipelineCompositions>
<pipelineComposition>
<name>Smart Telephone
</name>
<description>...
</description>
<active>false</active>
<edited>false</edited>
<sharePrivileges>...
</sharePrivileges>
<tagTemplate>false</tagTemplate>
<tagReuse>true</tagReuse>
<tagShareable>true</tagShareable>
<idCounter>4</idCounter>
<components>
[-.-]
</components>
<pipes>
<pipeEntry>
<sourceID>source_component 1
</sourceID>
<sinkID>filter_component_2
</sinkID>
</pipeEntry>
[---]
</pipes>
</pipelineComposition>
[---]
</pipelineCompositions>
</personalRepository>

Each pipeline composition is represented by a separate
XML subentry; with all specifications included to
instantiate all necessary software objects to rebuild the
complete pipeline composition. Inside of each of these
pipeline compositions we have the entries of the necessary
pipeline components. Each of these component entries
starts with the name and description as well as all
component specific definitions (e.g., threshold values,
string keywords). An example of a single component
description (keyword filter object) is the following:

CBClient

Control User Interface

Client “— -

Connection —

Pipeline Instantiation
Control Personal Repository

=— Use Shared Repository

UoIIBLILOY SJOLISY
r

Visualisation

Real-Time
Evaluation

Edit Tools and
I B Preferences

IEE l-:

COMPUTER
SOCIETY

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

<filterKeyword>
<name>Keyword Filter</name>
<description>...</description>
<keyWords>
<string>Gross</string>
<string>Marquardt</string>
[-..]
</keyWords>
<occurrence>1</occurrence>
<forwardType>...</forwardType>
<id>filter component_ 8</id>
<componentType>filter</componentType>
[-..]
<isActive>false</isActive>
<interrupted>false</interrupted>
<isInitialized>true</isInitialized>

<sinks>
<filter>...</filter>
</sinks>
</filterKeyword>

The published pipeline compositions for collaborative
sharing are stored in the Shared Repository. They are
saved in the XML format as well. Each of these shared
entries starts with the identification of the publisher, the
type of the shared entry (e.g., abstract template, complete
pipeline), the category, and the description. The rest of the
XML entry includes the pipeline composition itself, either
as complete pipeline composition, or as an abstract
template. An example of a Shared Repository is the
following:

<sharedRepository>
<sharedRepositoryEntry>
<publisher>Nicolai Marquardt</publisher>
<type>Complete pipeline</type>
<category>Cooperative Media Lab
</category>
<description>Information channel
of the CML lab.
</description>
<pipelineComposition>

[...]

PersonalRepository
-pipelineCompositions : Vector
+add()
+removel)
+clear()
+getEntries() : Vector
+serialize()

</pipelineComposition>
</sharedRepositoryEntry>

</s£é£ééRepository>

Furthermore, the CBServer manages a directory of all
pipeline components (sensors, filter and actuators), and
submits their specification to all clients. The dynamic
directory can be extended with new components at any
time, and this ensures the easy extendibility of
CollaborationBus. New pipeline components can be
developed by easily deriving them from one of the abstract
base class (sensor, Filter, Actuator). For them all
common and important pipeline element methods are
already implemented.

The CBClient implements the GUIs described below.
For creating, controlling and editing pipeline
compositions it is necessary to support all the XML
operations of the server, and the methods for instantiating
pipeline compositions (for the editor and testing tools).

4.2 CollaborationBus Class Diagram

The class structure of the repositories and pipeline
compositions is illustrated in an UML class diagram in
Figure 2. The pPersonalRepository class provides
methods to add, remove, modify, and get
PipelineComposition objects. The sharedRepository
contains a collection of SharedRepositoryEntries,
which wraps one PipelineComposition and specify the
sharing attributes of this PipelineComposition (e.g.,
abstract or complete template).

The PipelineComposition oObject is a composite
object for a series of PipelineComponents. It
encapsulates methods for controlling pipeline

ProcessingThread

+run()

+deserialize()

SharedRepository

-sharedRepositoryEntries - Vector

radd()
+remove()

+clear()

+getEntries() : Vector
+serialize()
+deserialize()

SharedRepositoryEntry
-publisher : string
-type : string

Sensor

FAVAVAN

category : string
1.* |-pipelineComposition
-sharingConfiguration : Vector

Sensor 1 Sensor 2

Sensorn

PipelineComposition 1.
Fname : string 1.1
Fdescription : string -
. lactive : bool =
1. Ladited : bool : PipelﬂneComponenr
| sharePrivileges Fid : string L
LpipelineComponents c_ache.E\ernenls - Vector 0.1
bestart() Fsinks : Vector 0.
Hstop() " [rexecute()
l+addComponent() hd [+forward()
1.1 1 HremoveComponent() 1 1 fraddSink()
f-clear() N AN
Filter Actuator
FAYAVAY FAVAYAN
Filter 1 Filter 2 Filter n Actuator 1 Actuator 2 Actuator n

Figure 2. CollaborationBus repository and pipeline UML class diagram.

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

IEE l-:

COMPUTER

SOCIETY

compositions (e.g., start and stop), and for adding and
removing pipeline components. PipelineComponent is
the abstract base class for the sensor, Filter, and
Actuator base classes. It provides common methods for
each pipeline component (like processing, forwarding and
caching of events). Inside the PipelineComponents
multiple threads (ProcessingThread) are running to
ensure rapid processing of data as well as rapid forwarding
of events to the subsequent component.

Sensor, Filter, and Actuator are abstract base
classes for the concrete pipeline components allowing to
respectively: retrieve sensor values from any number of
sensors from the SensBase infrastructure and push them
into the pipeline process (e.g., sensor values from the
ESB or Phidgets hardware devices [11]); process incoming
values (e.g., keywords, average, or threshold filter); and
control the actuator elements (e.g., generate an RSS feed,
show a message on a text display, or drive other
applications via AppleScript).

CollaborationBus is implemented by means of the
Eclipse IDE version 3.1M6 on Mac OS X 10.4 in Java
version 1.4.2 with Swing libraries for the GUI. Several
libraries are used for XML [29] processing (e.g., for the
serialisation and de-serialisation of pipeline compositions
[31], for parsing sensor descriptions, for creating XPath
expressions [28]); for remote connections (e.g., SOAP
[27] and XML-RPC [30] connections); and for GUI
enhancements.

(SHSNS) CML Editor - Important Messages

A B & @ 0O B b B @®©

Pipelines Preferances Sharing Reposilory ~ Evenllog SensorValues Occumences Componenls — Slarl Pipelines

5 User Interface

CollaborationBus provides four GUI components,
which we briefly describe below.

Login and Control GUI. In order to get to their Control
GUI, users have to login through the Login GUI. After
login, users can see the Control GUI with the listing of
their pipeline compositions, including an indicator of the
current state of each pipeline composition (i.e., running,
in edit mode, off). All functions for modifying the
repository and its compositions are available from within
this interface such as adding or removing pipelines;
starting and stopping the threaded execution of
compositions; sharing selected compositions.

Editor GUI. In the Editor GUI users can access the
filter compositions underlying each pipeline. Figure 3
shows the Editor GUL. In the top area the user can choose
several buttons for loading the Pipelines, change the
Preferences, and so forth. In the middle area the
respective pipeline with its sensors, filters, and actuators
is shown (each item is represented as a rectangular box).
In the bottom area the properties of the currently selected
pipeline component (rectangular box) are shown and can
be altered. In order to create a new pipeline composition,
users can select available sensors in a sensor browser.
For each sensor type with corresponding sensor value
type, specific filters and operators can be selected. Finally,

the actuators selected them in
the actuator browser.

Shared Repository GUIL
The collaborative sharing
mechanism is integrated in the
Control GUI and in the Editor
GUI. Here users can either

share and wupload their

Pipelines

Build the pipeline configuration: sensors, filter and actuators
Sensors and Conditions: 4+ | Actuators: +
MessagesNic £+% Keyword Filier %% Occurrence Filter £ | @ Display message

T'QMN’: EEEdE= cbus, sensation, cscw m"v':sm TR :: Notification to the deskiop.

- (3 SMS Notification

+ Can o shorl

Mot yet registered for any sensor isplay messages.

e >

Delete Component Please add all keywords to the list.

sensation
csow

Keyword Filter:

compositions, or download
compositions.

Real-Time Visualisation
GUI. In the assembly of
pipeline compositions with a
variety of components it can
be difficult to keep track of the
- intra-pipeline communication
between the components and
the processing of the forwarded
pipeline events. The Real-

Time Visualisation GUI
Gl provides a variety of graph
Remove visualisations that can display

the forwarded values of each

Threshold of keywords 1

Type of forwarding " Forward counter value

component of the pipeline.
= An input interface allows

users to manually insert sensor
values to test and verify the
pipeline composition without

Apply

Figure 3. CollaborationBus Editor GUI.

having to wait for real sensor
values from the sensors.

IEE l-:

COMPUTER
SOCIETY

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

6 Related Work

There are some prototypes and systems with
similarities to CollaborationBus regarding the pipelines
and filters metaphor, the support of non-expert users, and
the collaborative sharing. For the sake of completeness we
also glance at environments for experts and at sensor
network composition software.

Pipelines and filters. This concept is used in some
systems. For instance, the Automator of Mac OS X [1]
is a graphical editor for scripting the operating system and
applications, and MAX/MSP [8] is a graphical
environment for music, audio, and multimedia.

Environments for non-experts. iCAP [25] allows users
to rapidly prototype Ubiquitous Computing
environments. e-Gadgets [18] is an editing tool for
creating device associations in a home environment. The
jigsaw [15, 22] is an editor for getting control over the
technological home environment through assembling
pieces of a jigsaw puzzle. Some systems that are based on
mobile devices to control configurations are systems for
PDAs [18] and TabletPCs [15]. A CAPpella [9] supports
programming by demonstration of context-aware
environments. In eBlocks [6, 7] a user interface for
building sensor-based environments and configuring
condition tables are provided. The Phidgets toolkit [11]
facilitates the development of physical user interfaces by
providing a range of sensor and actuator elements.

Collaborative sharing. While in Computer-Supported
Cooperative Work collaborative sharing of location
information, files, workspaces, software and patterns is
wide-spread [12], an approach to sharing sensor- and
actuator-based environments among users is still missing.
In [12] design issues of Computer-Supported Cooperative
Work applications that use data sharing are examined.
This includes proposals for access control, adding meta-
information, version history, and methods for handling
updates and concurrency difficulties. Further common
classifications of sharing between users are described in
[19, 20]. Hilbert and Trevor describe the importance of
personalisation as well as shared devices for Ubiquitous
Computing environments [14].

Environments for experts. The iQL programming
model [5] is a non-procedural language for specifying the
behaviour of components in pervasive environments.
Papier-Mache [16] provides programming tools for
programming tangible user interfaces.

Sensor network composition software. The
VisualSense framework of PTOLEMY II [2, 3] is a toolkit
for the modelling and simulation of fine granular sensor
network communication and processing. Several special
complex development environments for the evaluation of
the communication in sensor networks have been
presented (e.g., SensorSim [21], EmTOS [10], TinyDB
[17], J-Sim [24], and event flow visualisation [4]).
However, non-experts probably have difficulties in using
these environments.

7 Conclusions

In this paper we have introduced the CollaborationBus
editor that encapsulates and hides the details of the
underlying technology. It allows experts as well as non-
experts to easily specify Ubiquitous Computing
environments. More experienced users can control the
pipeline composition configuration in any technical detail
they need and get details on demand. Users can share their
pipeline compositions via a shared repository. This way
the CollaborationBus features an incrementally growing
library of ready-to-use pipeline compositions that form a
diverse network of collaborative sensor-actuator-relations.

In an informal evaluation we have collected several
user opinions at the public demonstration of
CollaborationBus to many visitors at the Cooperative
Media Lab Open House over three days, where the visitors
had the chance to try out the CollaborationBus editor in
detail (with a huge set of connected sensors and actuators).
After a short introduction of the system, several visitors
started to create their own compositions, and to select
desired sensors, filters, and actuators. The most popular
function of the tool was the integrated sharing
mechanism: users enjoyed browsing the large set of ready-
to-use pipeline compositions in the shared repository; and
often they used one of the shared compositions as
template, modified parameters in the compositions or
built a new configuration on the basis of this composition
and sometimes shared this composition again. However,
some users were worried about privacy issues when
sharing their compositions.

In the future we would like to evaluate the created
pipeline compositions of the users (especially those in the
shared repository), and identify common patterns in the
created compositions. From that we would like to develop
assistive functions that provide users suggestions for
reasonable compositions. The configuration interface of
the filter components in the Editor GUI can also be
improved to become more intuitive for the user. A
graphical mapping could allow users to drag and drop the
desired input and output commands and the component
configuration. A final important aspect related to security
is the introduction of a system-wide authorisation and
authentication system in order to further secure the access
to the sensor values and pipeline compositions. For this
purpose the CollaborationBus repository storage and the
sensor value access could be integrated in the security
system of the Sens-ation platform.

Acknowledgments

We thank the members of the Cooperative Media
Lab—especially Tareg Egla, and Christoph Oemig—for
inspiring discussions on the concepts and implementation
of CollaborationBus, and for providing the PRIMI and
Sens-ation platform. Thanks for the anonymous reviewers
for comments on earlier versions of this paper.

IEE |-:

COMPUTER
SOCIETY

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

16.

Klemmer, S.R., Li, J., Lin, J. and Landay, J. Papier-

References Mache: Toolkit Support for Tangible Input. In Proc.
Conference on Human Factors in Computing Systems -
CHI 2004. pp. 399-406.

1. Apple Computer, I. Apple - Mac OS X - Automator. . .
http://www.apple.com/macosx/features/automator, 17. Madden, s’.R" Franklin, MZJZ’. Hellerstein, J.M. e}nd
2006. (Accessed 2/10/2006). Hong, W. TinyDB: An Acquisitional Query Processing

2. Baldwin. P.. Kohli. S.. Lee. E.A.. Liu. X. and Zhao. Y. System for Sensor Networks. ACM Transactions on
Modelling of Sensor Nets in Ptolemy II. In Proc. Third 18 1]\)/[atabase Sy.steImsK?ao, ! (Mzr. 20(1051\3[’ pllz' 1221_173'13 A
International Symposium on Information Processing in) a'v.rommatl, - fhameas, A. an arkopou’os, . AR
Sensor Networks - IPSN 2004. pp. 359-368. Editing Tool that Manages Device Associations in an

3 Baldwin. P.. Kohli. S.. Lee. E.A.. Liv. X. and Zhao. Y In-Home Environment. Personal Ubiquitous Computing
Visualsense - Visual Modeling for Wireless and Sensor 8, 3-4 (July 2004). Pb- 255-263. .

Network Systems. Report Number: UCB ERL 19. Olson, J.S., Grudin, J. and Horvitz, E. Towards
. Understanding Preferences for Sharing and Privacy.

M d B/ERL MO04/8, Ptol P t, Apr.

004 e ucs/ /8, Ptolemy Project, Apr Report Number: MSR-TR-2004-138, Microsoft

4. Buschmann, C., Pfisterer, D., Fischer, S., Fekete, S.P. ’ Rclasearch, 2004. . Horvitz. E. L Breaki
and Kroeller, A. SpyGlass: A Wireless Sensor Network 0. Olson, I.§., Grudin, J. and Horvitz, . Late Breaking
Visualiser. SIGBED Review 2, 1 (Jan. 2005). pp. 1-6. Result: A Study of Preferences for Sharing and Privacy.

5 Cohen. N.H.. Lei. H. Cast,ro P.. Davis. J.S. and In Extended Abstracts of the Conference on Human
Purakayastha, A. Composing Pervasive Data Using iQL. l;gcgtgrs in Computing Systems - CHI 2005. pp. 1958-
In Proc. Fourth Worksh Mobile C ti :

Sl;/stei;)sc andoirpplicat?(fnss —O\I;/NCI)SSA (2)0(1)26 pporgnf_l;olzg 21. Park, S., Savvides, A. and Srivastava, M.B. SensorSim:

6. Cotterell, S. and Vahid, F. A Logic Bl(;ck .Enablin'g A Simulation Framework for Sensor Networks. In Proc.
Logic Configuration by Non-Experts in Sensor 3rd A.CM Interpationgl Workshpp on Modelliqg,
Networks. In Extended Abstracts of the Conference on é;:tleﬁis’ &%%Visl\ilm;éggogp oforlllﬁless and Mobile
H Factors i ti t - CHI 2005. pp. > - B Lo
1;;;119221; ors in Computing Systems - C PP 22. Rodden, T., Crabtree, A., Hemmings, T., Koleva, B.,

7. Cotterell, S., Vahid, F., Najjar, W. and Hsieh, H. First g“mtl’le’ ; k;fson’BKsl‘g' and ga‘.‘ss"% P. Beltwee“ the
Results with eBlocks: Embedded Systems Building azzie of a New Bullding and its Eventua Corpse:
Blocks. In Proc. 1st IEEE/ACM/IFIP International Assemb}mg the Ublql}ltous Home. In Proc. Confergnce
Conference on Hardware/Software Codesign and System on Designing Intera_ctlve Systems: Processes, Practices,
Synthesis - CODES+ISSS 2003. pp. 168-175. Methods, and Techniques - DIS 2004. pp. 71-80.

- S . 23. Salber, D., Dey, A.K. and Abowd, G.D. The Context

8. Cycling'74. Cycling'74 |l maxmsp. http://www. . .
cycling74.com/products/maxmsp, 2006. (Accessed Toolkit: Aiding the Development of Context-Enabled
2/10/2006) ’ Applications. In Proc. Conference on Human Factors in

9. Dey, AK., Hamid, R., Beckmann, C. and Hsu, D. A Computing Systems - CHI'99. pp. 434-441.

) " C T ’ . y 24. Sobeih, A., Chen, W.-P., Hou, J.C., Kung, L.-C., Li, N.,
CAPpella: Programming by Demonstration of Context- Lim H.T H-Y. and Zh K. J-Sim: A Simulati
Aware Applications. In Proc. Conference on Human 1m, H., lyan, H.-1. an ang, B. J-o1m: imulation
Factors in Computing Systems - CHI 2004. pp. 33-40. Environment for quless Sepsor Networks. In Proc.

10. Girod, L., Stathopoulos, T., Ramanathan, N., Elson, J., 38th Annual Symposium on Simulation. pp. 175-187.
Estrin, D., Osterweil, E. and Schoellhammer, T. A 25. Sohn, T. and Dey, A.K. Int@ractive Post@r: iCAP: An
System for Simulation, Emulation, and Deployment of Informal TO.Ol for Interactive Prototyping Context-
Heterogeneous Sensor Networks. In Proc. Second Aware Applications. In Extepded Abst.racts of the
International Conference on Embedded Networked Conference on Human Factors in Computing Systems -
Sensor Systems - SenSys 2004. pp. 201-213. 26 $H]I 20035' ppI. 9f74_975'. Shari . Academi

11. Greenberg, S. and Fitchett, C. Phidgets: Easy - oala, oS Ir:}ormf{athn ¢ allrlfng mn BCEIIl emic
Development of Physical Interfaces Through Physical gommulrlntgleséoogw eVIIZ\;v 1(;9 nformation Behaviour
Widgets. In Proc. ACM Symposium on User Interface esearc ()- PP L . .
Software and Technology - UIST 2001. pp. 209-218. 27. The Apache Software Foundation. WebServices - Axis

12. Greif, I. and Sarin, S. Data Sharing in Group Work. ACM Architecture Guide. World Wide Web Consortium, http://
Transactions on Office Information Systems 5, 2 (Apr. ws.apache.org/axis/java/architecture-guide.html, 2005.
1987). pp. 187-211 ’ (Accessed 2/10/2006).

13. Gross, T., Egla, T. and Marquardt, N. Sens-ation: A 28. EBC' XdML P\;thld I{lelrcllgl%illggc(XPa.th). hW3/C/
Service-Oriented Platform for Developing Sensor-Based ecomn;en a/t,ifl);l/' o}rl]99196 Ae 01330;;;151/1;,00 étp ’
Infrastructures. International Journal of Internet WWW.W>S.0rg/ xpath, - (Accesse)'.

29. W3C. Extensible Markup Language (XML). World Wide
Protocol Technology (IJIPT) 1, 3 (2006). pp. 159-167. Web C . htto:// 3 XML/ 2006

14. Hilbert, D.M. and Trevor, J. Personalizing Shared Ae %n823§372%166 Up://WWW.w2.0rg ’ ’
Ubiquitous Devices. ACM interactions 11, 3 (May/June (ceesse). e
2004). pp. 34-43. 30. Winer, D. XML-RPC Specification. http://www.xmlrpc.

15. Humble, J.. Crabt AL H . T.. Ak K.- com/spec, 1999. (Accessed 2/10/2006).

e, rapree, CTITINES, 1., fiesson, 31. XStream. XStream - Architecture Overview. World Wide

P., Koleva, B., Rodden, T. and Hansson, P. Playing with
the Bits - User-Configuration of Ubiquitous Domestic
Environments. In Fifth International Conference on
Ubiquitous Computing - UbiComp 2003. pp. 256-264.

Web Consortium, http://xstream.codehaus.org/
architecture.html, 2006. (Accessed 2/10/2006).

IEE l-:

COMPUTER
SOCIETY

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007 IEEE

