Collaboration Bus

Research Project Midterm Presentation

May 2005 Nicolai Marquardt <firstname>.<lastname>@medien.uni-weimar.de Cooperative Media Lab Bauhaus University Weimar

0 0		SensWidget Ed	Editor
eneral Sett	tings	Confi	figuration Repeat Templates Sharing
Name Description	Project Activity Send notification when detecting high project activity of the sens-ation project	Shareable Create new Create new Add to mol	
nsors:	Conditions:		User: Nicolai Server + -
Movement Movement S for Bauhaus		+	Edit Server: ccml Online: 2h 23m Running dt.
Eclipse CVS sensor. Selected: Se		Time Gate between: 9 a.m. and 6 p.m	Project Components: Eclipse, Time, Counter, Email
ensor: M	1.1	1 1 1 1 1 1 1 1 9 1 1	Home Activity Components: ESBMove, Filter, Light, ActorColor Important Emails Compane, Counter, SMSCateway Active
			+ -

Outline

Motivation

- Initial position: Existing infrastructure with software/hardware sensors and actors (at home and/or in the office)
- Provide an easy-to-use method to integrate sensing and automated activities into everyday life (personal as well as business)
- Hide details of the technology (sensors, actors, platform) and the configuration of these components
- Consider personalized properties to represent the individual preferences and interpretations
- Exchange and share knowledge (and these personal interpretations)
- Control of the sensor-actor connections, but with guided support of the system

Motivation

Related Work (1)

- 1. Visual programming for UbiComp applications
 - Edit control networks for the in-home environment
 - Often with mobile device interfaces: PDA [Mavrommati et al. 2004], mobile phone [Barkhuus & Vallgarda 2003] or TabletPC [Humble et al. 2003]
 - Composition interface of sensors and conditions
 [Dey & Sohn 2003], Network editor [Mavrommati et al. 2004]

[Mavrommati et al. 2004]

[Dey & Sohn 2003]

[Mavrommati et al. 2004]

[Humble et al. 2003]

Related Work (2)

- 2. Sensor network composition software
 - Control over fine granular sensor network communication and processing [Baldwin et al. 2004]
 - Complete programming language, operator sets, math. libraries, etc.
 - Complex development environments, e.g. iConnect Micro-Epsilon
 - Integrated in business applications or science applications, e.g. Matlab
- 3. Visual programming languages
 - Enable the end-user to develop software components [Zhang et al. 2004]
 - Commercial products, e.g. HP VEE

[Baldwin et al. 2004]

Fig.: iConnect, Micro-Epsilon

[Cotterell et al. 2004]

Fig.: Hewlett-Packard

[Zhang et al. 2004]

1

Related Work (3)

- 4. Programming by demonstration
 - In Ubiquitous Computing: longer period of observation, then definition and learning phase, so that AI algorithms detect patterns [Dey et al. 2004]
 - Hide all specific details of the underlying mechanisms
- 6. Physical Representation
 - E.g. the Phidgets project of Saul Greenberg: associations between sensors, software and real objects [Greenberg & Fitchett 2001]
 - Implementation: ActiveX Controls in .NET
 - Also: ambient interfaces

[Dey et al. 2004]

[Greenberg & Boyle 2002]

1

Related Work

Findings: [Hague et al. 2001], [Cotterell & Vahid 2005], [Humble et al. 2003], [Cotterell et al. 2004], [Rodden et al. 2004], [Crabtree et al. 2004]:

- Users would like to control and program the sensor-based applications and build new ones; but without to much specific knowledge needed
- They also would like to have the option, to change the behavior of their developed applications (dynamic) and to control them (activate, deactivate)
- Boolean conditional tables (logic blocks) are difficult to understand for the most users, so they need support
- Users need support for using the interface (guide the user, hide optional parameters, use icons and color, etc.)
- Most of the conditional networks in the related work are built with three up to ten components and can be mapped to parallel pipes

Related Work: Conclusions

The different approach of Collaboration Bus:

- 1. Focus especially on smaller data flow definitions to support and enhance work and everyday life
- 2. Intuitive, easy-to-learn interface, with specialized functions (not too generic)
- 3. Hiding the graph theory as much as possible
- 4. Sharing mechanism, exchange of data flows
- 5. The "repository" view, personal control
- 6. Templates and patterns of flow definitions
- 7. No replacement for the complex "inference engine" modules
- 8. Covers Ubiquitous Computing and CSCW applications

Building Sensor-based Applications

- 1. Hardware level: nodes communication
- 2. Using framework: adapters, classes, hard coded
- 3. Widgets for software development (e.g. Context Toolkit)
- 4. Software development using libraries, visual IDE (e.g. Phidgets with ActiveX controls)
- 5. Visual editor, editing data flow networks, graph theory
- 6. Visual editor, guided network composition, adaptive
- 7. Wizard dialog, step-by-step pages
- 8. Automatic application (network) creation based on problem description, AI algorithms

User centric

Sens-ation: New Applications

Collaboration Bus

Sharing and Templates (1)

Sharing and Templates (2)

Layers

Structured into separate layers:

- Presentation layer: editor and personal repository
- Data exchange: description of current data flows and parameters
- Instance layer: creating components of the inference processing
- Personal Repository: individual SensWidgets, running threads
- Global repository: sharing, components, wrappers, etc.

2

Concept Overview

Key features of "Collaboration Bus":

- 1. Personalized: Instead of using only a few predefined and generic operational networks we use quite a number of **highly personalized** sensor-actor-relations
- 2. Overview and control: Let the user control (start, stop) and edit his own created relations
- 3. *Easy and fast:* these sensor-actor-relations have to be defined and executed in a few minutes (seconds)
- 4. Sharing knowledge: for cooperative work, users can share their sensor-actor-relations (adaptive modules)

Implementation

Terms and definitions:

- **Task (Procedure, Workflow):** This is the activity the user want to implement with his tools (infrastructure)
- **Data Flow:** the stream of data between source and sink, passing several processing steps
- **Pipe:** connection between two components
- **Component:** source, sink and filter
- **Composition (network, graph):** directed graph of connections between data sources, sinks and filters, and with specification of their relations
- **Filter (operator):** conditions, operations, calculations, data processing, enrichment with meta data
- **SensWidget:** encapsulated composition with additional features, especially for sensor-actor-relations

Implementation

Project Parts (Sub Projects):

<u>Complexity:</u>

1.	Instantiation: The composites of sources, filters, operators and sinks, local or remote objects, dynamic creation (from XML)	++++
2.	Composition: User interface, editor, support for creating new SensWidgets	++++
3.	Control: Personal repository, updates, start editor, summary, instantiate modules	++
4.	Actors: Actor elements, display, hardware, XML description, handling in Sens-ation server, ActorBridge	
5.	Language: Description language for sensor-actor-data-flow, networks, operators, parameter	
6.	Further Sens-ation Extensions: Extensions of the sensor XML description, actor integration, metadata, SensorValue extensions (pipes), personalization, <i>user right management, security</i>	+++

Technology

- Filter and pipe design pattern: processing components as filters, thread-safe pipes (FIFO) for data transfer, most of the components multi-threaded
- Abstract classes and interfaces: actor, source, pipe, filter
- Dividing of smaller processing steps into command objects; reusable command collections
- Composites (GoF) of components: filter with hierarchical structure
- Each component with an GUI representation: display method and also for dynamic set of parameters (reflection)
- Boolean operators for AND and OR conditions between pipelines
- Transformation between the main data types (int, boolean, String)
- Two implementations of filters and operators:
 - Multi-threaded objects for independent processing nodes
 - Entries in the command set collection (composite), especially for preprocessing of the values before they enter the pipes network (e.g. normalize, threshold, cut)

Filters and Operators

- Processing node of the pipeline (implement source and sink interface)
- Adaptive; include sensor parameters (e.g. normalize)
- Operator types (nodes):
 - **Numeric:** e.g. threshold, gate, counter, average, normalize, cut
 - **Binary:** e.g. gate, convert
 - **Text:** e.g. match, match list, convert, length, regular expressions
 - XML: e.g. contains node, compare, parameters, text search, other string filters, count entries, root object, match DTD
 - **General:** e.g. event counter, collector (reports), time gate, multiple translations between the data types, database lookup, sensor, delay
- Message generator for reports or summary (includes sensor and context details)

Actors

- Set of hardware and software actor modules (connected via adapters)
- Actor collections: ActorBridge
- XML description for registration:
 - 1 x Callback connection, location, availability, other parameters
 - N x Command + Parameter: executes action of the actor
- Examples of the actors set:
 - Software: Email, RSS feed, application starter (e.g. AppleScript Lib), visual notify (e.g. dockbar), IM daemon sends message
 - Hardware: controllable power plugs, IR commands, acoustic notification, SMS message
- Types of messages: event, report, summary, collection

Interface Design Studies

1. Control Interface:

- Overview of created sensor-actorrelations (SensWidgets)
- SensWidget operations: start, stop, edit, delete, add
- See current state of all Widgets
- Start and stop complete repository
- Additions: sharing options panel, external flow definitions

Interface Design Studies

2. Editor Interface:

- Create a new SensWidget
- Upper screen: name, description, configuration, repeating, templates and sharing options
- Create data flow conditions: select sensor, configure sensor, add conditions and finally select actor

eneral Sett	tings	Configuration Repeat Templates Sharing		
Name	Project Activity	Shareable		
Description	Send notification when detecting high project activit of the sens-ation project	Create new sensor as data sink Create new template when finished Add to mobile repository		
nsors:	Conditions:	+ - Actor Element +		
Movement S for Bauhaus		+ SMS Notification Send message to Nicolai Marquardt.		
Eclipse CVS sensor. Selected: Se		► Time Gate between: 9 a.m. and 6 p.m. +		
roperties o	of selected item	Properties of actor		
	ovement			
	up: Numeric Sensor			

Interface Design Studies

Using SensWidgets

- Repeated actions, loops (e.g. weekly report, awareness, home environment control)
 - More complex compositions
 - Also use of multiple pipes and inference engine modules
- Only once and reject (e.g. notification of an awaited event, contact a person)
 - Short pipelines
 - Often using templates and copy mechanism
 - Specify max. execution time
- Multiple time execution, manual select (e.g. project messages, state)
 - Specify execution conditions (e.g. with filter element

Using SensWidgets

- Ubiquitous Computing, private usage:
 - Control the home environment
 - Awareness of peoples activities
 - Device associations
 - Remote control
 - Reminders
- Computer Supported Cooperative Work, business usage:
 - Contact colleagues (with the option to select the most convenient point of time)
 - Project reports (from various sources)
 - Awareness of project participants

Example Scenarios: UbiComp

Example Scenarios: CSCW (1)

Example Scenarios: CSCW (2)

Conclusion

- User interface and control of light-weight SensWidgets
- Easy-to-use editor, reusable components, templates
- Sharing for collaboration
- Flexible underlying technology layer: XML, dynamic component composition, transferable
- Personal repository, overview and control (local or remote located)
- Concept for the integration of Actors, and some sensor description extensions at the SensBase platform

Literature and References (1)

[Barkhuus & Vallgarda 2003]	Luise Barkhuus and Anna Vallgarda: Smart Home in Your Pocket, in: Interactive Posters, Interfaces, Adjunct Proceedings of the UbiComp, Seattle, USA, 2003
[Baldwin et al. 2004]	Phillip Baldwin, Sanjeev Kohli, et al.: Visulasense - Visual Modeling for Wireless and Sensor Network Systems, UCB ERL Memorandum, Ptolemy project, April 2004
[Cotterell et al. 2004]	Susan Cotterell, Kelly Downey, Frank Vahid: Applications and Experiments with eBlocks - Electronic Blocks for Basic Sensor-Based Systems, in: Proceedings of the IEEE Sensor and Ad Hoc Communications and Networks (SECON04), Santa-Clara, California, 2004
[Cotterell & Vahid 2005]	Susan Cotterell, Frank Vahid: A Logic Block Enabling Logic Configuration by Non-Experts in Sensor Networks, in: Proceedings of the CHI 2005, Portland, Oregon, ACM, 2005
[Crabtree & Rodden 2004]	Andy Crabtree and Tom Rodden: Domestic routines and design for the home, in: Computer Supported Cooperative Work: The Journal of Collaborative Computing, The Netherlands, Kluwer Academic Publishers, 2004
[Dey et al. 2004]	Anind K. Dey, Raffay Hamid, et al.: a CAPpella: Programming by Demonstration of Context-Aware Applications, in: Proceedings of CHI 2004, Vienna Austria, ACM, 2004
[Dey & Sohn 2003]	Anind K. Dey, Tim Sohn: Supporting End User Programming of Context-Aware Applications, in: Workshop "End-user development" at the CHI 2003, Vienna Austria, ACM, 2003
[Greenberg & Fitchett 2001]	Saul Greenberg and Chester Fitchett: Easy development of physical interfaces through physical widgets. Proceedings of the ACM UIST 2001 Symposium on User Interface Software and Technology, November 11-14, Orlando, Florida. ACM Press.
[Greenberg & Boyle 2002]	Saul Greenberg and Michael Boyle: Customizable Physical Interfaces for Interacting with Conventional Applications, in: Proceedings of the UIST 2002, 15th Annual ACM Symposium on User Interface Software and Technology, ACM Press, 2002

Literature and References (2)

[Hague et al. 2001]	Rob Hague, Alan F. Blackwell and Peter Robinson: End-User Programming in the Networked Home, in: 1st Equator IRC Workshop on Ubiquitous Computing in Domestic Environments, Nottingham, 2001
[Humble et al. 2003]	Jan Humble et al.: "Playing with the Bits" User-configuration of Ubiquitous Domestic Environments, in: Proceedings of the 5th International Conference on Ubiquitous Computing, Springer, 2003
[Kraemer & Seeger 2004]	Juergen Kraemer and Bernhard Seeger: PIPES - A Public Infrastructure for Processing and Exploring Data Streams, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France, June 2004
[Mavrommati et al. 2004]	Irene Mavrommati, Chilles Kameas, Panos Markopoulos: An editing tool that manages device associations in an in-home environment, in: Personal and Ubiquitous Computing, pp. 255-263, Springer, 2004
[Rodden et al. 2004]	Tom Rodden, Andy Crabtree, et al.: Between the Dazzle of a New Building and its Eventual Corpse: Assembling the Ubiquitous Home, in: Proceedings of the ACM Symposium on Designing Interactive Systems, Cambridge, Massachusetts, 2004
[Yacoub 2001]	Sherif M. Yacoub: Composite Filter Pattern, Hewlett-Packard Laboratories Palo Alto, May, 2001
[Zhang et al. 2004]	Kang Zhang, Guang-Lei Song, Jun Kong: Rapid Software Prototyping Using Visual Language Techniques, in: Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping, Geneva, Switzerland, 2004

Thank you for your attention!

Nicolai Marquardt Collaboration Bus Research Project

> Cooperative Media Lab Bauhaus University Weimar