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ABSTRACT 
Physical activity is essential in chronic pain rehabilitation. 
However, anxiety due to pain or a perceived exacerbation of pain 
causes people to guard against beneficial exercise. Interactive 
rehabiliation technology sensitive to such behaviour could provide 
feedback to overcome such psychological barriers. To this end, 
we developed a Support Vector Machine framework with the 
feature level fusion of body motion and muscle activity 
descriptors to discriminate three levels of pain (none, low and 
high). All subjects underwent a forward reaching exercise which 
is typically feared among people with chronic back pain. The 
levels of pain were categorized from control subjects (no pain) 
and thresholded self reported levels from people with chronic 
pain. Salient features were identified using a backward feature 
selection process. Using feature sets from each modality 
separately led to high pain classification F1 scores of 0.63 and 
0.69 for movement and muscle activity respectively. However 
using a combined bimodal feature set this increased to F1 = 0.8. 

Categories and Subject Descriptors 
H.1.2. Human Information Processing 

General Terms 
Algorithms, Experimentation, Human Factors. 

Keywords: Emotion; Machine Learning; Motion Capture; 
Electromyography; Body Movement; Pain Rehabilitation 
Technology; Physical Rehabilitation. 

1. INTRODUCTION 
Interactive technology developed to motivate physical activity has 
been efficacious in the rehabilitation of chronic conditions [1]. 
However, for the specific case of chronic pain (CP), efficacy is 
more limited [2, 3]. One major reason is that rehabilitation 
technology is not designed to adapt to the emotional state of its 
user. The person’s emotional state is important in CP because pain 
uniquely conveys threat [4], which generates fear, low confidence 
or catastrophic thinking leading to avoidance and self-protective 
behavior [5, 6]. In turn, this greatly reduces adherence to 
beneficial activity and leads to no progress or even negative 
effects. In CP rehabilitation, it is well understood that keeping 
active protects against weakening and stiffness, it inhibits the 
neurophysiological mechanisms underlying the spread of pain, 

increases confidence in physical ability, underpins achieving goals 
[7] and can improve quality of life [8]. Physiotherapists (and other 
healthcare staff) regularly educate and advise on activity and 
provide psychological support to encourage adherence. In Singh 
et al. [9], the authors discuss how physiotherapists make use of 
behavioral cues (such as guarding, avoidance, alteration of 
breathing or anxiety) from the patient to decide on the timeliness, 
amount and type of support to provide. This can vary from simple 
breathing prompts to partitioning the exercise to facilitate graded 
exposure, or simply providing information, reassurance or 
encouragement. However, limited human resource means there is 
a heavy reliance on self-management and self-rehabilitation where 
the psychological states are not observed and thus the 
aforementioned adherence issues occur [10]. 

Clearly, automated systems that have the capability to recognize 
such affective states are a potential solution. However, the 
development of recognition models to reliably detect pain 
expression or pain-related behavior remains a complex challenge. 
To date, the main expressive modality that has been researched is 
facial expression [11-16]. However, for the design of CP 
rehabilitation systems, expression from body movement is 
essential since many of the protective behaviors are manifest in 
whole-body motion [6]. To the best of our knowledge, automatic 
detection of pain-related expressions from body movement have 
barely been studied [17]; although in the wider context of generic 
affective states, there has been much recent work on automatic 
recognition from body movements and postures (for a review see 
[18]) and in sports-games [19]. In addition to outward 
expressions, another measure that reflects protective behavior is 
anomalous levels of muscle activity given a particular movement 
context. In a surface electromyographic (sEMG) study specific to 
chronic low back pain (CLBP), Watson et al. [20] showed that 
psychological factors influenced the prolonged use of lumbar 
paraspinal muscles during forward flexion exercises. Similarly, in 
a study by Van der Hulst et al. [21], the authors showed that there 
was an association between high sEMG levels and a guarded 
mechanism during walking. In Geisser et al. [22], the authors 
examined the relationship between lumbar flexion, dynamic 
sEMG and pain-related fear in people with CLBP. Correlations 
were found between pain-related fear and reduced lumbar flexion 
as well as increased sEMG during full flexion. 

In this study, we develop and evaluate a recognition framework to 
automatically classify forward reaching motions (Fig. 1) in people 
without chronic pain, and people with chronic pain reporting low 
pain or high pain after the execution of the exercise. We used 
supervised machine learning with early fusion of features 
processed from whole body motion capture (MoCap) and sEMG 
data from the lumbar paraspinal and upper trapezius muscles. In 
Section 2, we describe the nature of the dataset we used and its 
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acquisition method. In Section 3, we describe the initial feature set 
identified as potentially descriptive of pain based on literature and 
initial inspection. In Section 4, we report the results of an 
ANOVA analysis of the features and we also report on the 
optimization and validation of three Support Vector Machine 
(SVM) frameworks using three initial feature sets: two 
frameworks were trained using unimodal features (MoCap and 
sEMG respectively) and the third using a combined bimodal 
feature set. We conclude in Section 5 by discussing how these 
findings inform current development of automatic CP 
rehabilitation technology. 

 
Figure 1. Example of a forward phase of the reach exercise 

2. DATASET DESCRIPTION 
The data used in this study is a subset of the extensive multimodal 
database presented in [23], which contains a wider set of 
movements and sensing modalities and pain-related labeled 
behaviors. The subset considered here consists of 18 people with 
CLBP and 13 control subjects undergoing forward-reaching 
motions (Fig. 1), this yields 30 instances of reaching from the 
CLBP group and 19 instances from the control group. This 
exercise is part of rehabilitation routines in CLBP and is one that 
generates anxiety and fear possibly due to a perceived 
exacerbation of pain [9].  

To capture movement the subjects wore a suit with Inertial 
Measuring Units (IMUs) (Animzaoo IGS-190). Each IMU was 
attached with a minimal amount of velcro-strapping to reduce 
invasiveness. Each IMU returned 3D Euler angle triplets in the 
BioVision Hierarchy format (BVH) at a sample rate of 60Hz. In 
conjunction, skeletal proportions were annotated from still 
photographs of each subject. Finally, 3D Cartesian positional 
triplets of 26 anatomical nodes over the whole body were 
calculated. Also, 4 wireless electromyographic (sEMG) sensors 
(BTS FREEEMG) were attached to the lumbar paraspinal muscles 
(hereafter, called lower-back muscles) and to the upper section of 
the trapezius muscles (hereafter, called upper-back muscles). Each 
pair of sensors was placed laterally equidistant to the spine and 
sampled at 1kHz. The recording procedure of the two sensing 
systems was automatically triggered for synchronization. 

Each instance of a reached forward movement consisted of a 
forward reach with both hands while standing, then a retraction 
back to a standing pose (Fig. 1). After each instance, the CLBP 
participants were asked to report a level of pain defined as a value 
between 0 for no pain to 10 for extreme pain (mean 3.85, standard 
deviation 3.16). Within the CLBP group, instances were 
categorized as low pain if the self reported rating was ൏ 5 and 
high pain if  5. This resulted in 15 instances in the low pain 
group and 15 in the high pain group. The 19 control instances are 
categorized as no pain. Overall, this is treated as a 3 category 
classification task for two main reasons. First, the control 
instances are not equivalent to CLBP instances with zero reported 
pain, control subjects will have no fear of pain exacerbation and 
no fear of performing the exercise and [5] are therefore a separate 
class.  Secondly, self reporting is highly subjective and variable 
between subjects and a broad categorization is less dependent on 
the reported values compared to a regression task.  

3. FEATURE EXTRACTION 
In this section, we describe the feature set derived from MoCap 
and sEMG information. Due to the large amount of information 
that can be potentially processed from whole body MoCap and 
sEMG signals, we aimed to find a minimal feature set salient to 
the reaching forward movement. 

Movement Features. With the rationale that pain intensity affects 
performance in physical exercise [24], we visually inspected the 
movement profiles of various body segments during each reaching 
instance. It was found that the vertical displacement of the 
forearm and the neck and flexion angles showed differences 
between the two pain level groups. We consider five features 
derived from these profiles as described in Table 1 (features 1 - 
5). To account for differences in skeletal proportions, positional 
features were normalized accordingly.  

Muscle Activity Characteristics. In concordance with [20] and 
[22], sEMG signal characteristics during a forward flexion 
movement shows typically high activity at the onset to apex phase 
followed by a significant decrease in activity during retraction. 
Fig. 2-left shows this expected sEMG profile with a drop in 
activation during retraction after the change point (indicated by a 
red spot). Fig 2-right shows an example of a lack of change in 
muscle activation due to poor execution or avoidance in 
performing the movement. Using the upper envelope of the 
rectified signal, we automatically extracted the change point, i.e. 
the approximate time at which the highly active onset to apex 
phase changes to the retraction phase with low activity. This was 
done by adapting the method in [25] using two equal-sized sliding 
windows (50-frame in width) with a 20-frame separation sliding 
across the whole signal. The twin-window location that optimizes 
the difference between the mean activities within the two 
windows was found. The middle frame value between the two 
windows normalized by the duration of the whole motion 
determines the feature ChangePointTimeRatio. Also the signed 
maximum difference in mean activity from the two windows 
normalized by the maximum activity of the whole motion yields 
the feature ChangePointDifference. These quantities were 
calculated for all four sEMG channels (see features 6 – 13 in 
Table 1). Pain-related waveforms with relatively high activity in 
the retraction phase gave lower differences or even negative 
values and occurred at irregular times. 

4. MODELLING AND RESULTS 
An initial one-way analysis of variance (ANOVA) was carried 
out, using SPSS v.21, to test the statistical significance of each of 
the feature with the three levels of pain. We use the left arm only 
due to lateral symmetry thus avoiding the duplication of values 
and reducing feature dimensionality. The results showed that most 
of the features were statistically significant (see bold p- values in 
Table 1). 

Figure 3. Lower back sEMG signals from a reaching 
motion with change point locations, normal pattern (left) 

with avoidance (right). 
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Table 1: Features and anatomical nodes (highlighted in yellow on the stick figure) used in the study. For clarity, TopNeck = 24, 
LowNeck = 12, Hip = 1, UpperRightLeg = 7, UpperLeftLeg = 2, LowerRightLeg = 8, LowerLeftLeg = 3, RightFoot = 9, LeftFoot = 

4, UpperLeftArm=15, LowerLeftArm = 16.  

FEATURES p-value SVM model that 
includes the feature 

 

M
o 
C 
a 
p  

1. Range-NeckBendingi = Max(NeckBendingProfilei) – Min (NeckBendingProfilei) 0.000 M1 

2. FlexionAnglesi = Max (HipAnglesProfilei) –  Min (HipAnglesProfilei) 0.000 M2,B1 

3. LeftArmNumberOfPeaksi (ArmInclinationProfilei) 0.782 M2 

4. LeftArmMeanHeightPeaksi (ArmInclinationProfilei) 0.229 M1,B2 

5. LeftArmDistanceFirstLastPeaksi (ArmInclinationProfilei) 0.017 B2 

 

s 
E 
M 
G 

 

6. ChangePointDifferencei at Right Lower Back Muscle  0.023 E1,E2 

7. ChangePointDifferencei at Left Lower Back Muscle  0.013 E2,B1,B2 

8. ChangePointDifferencei at Right Upper Back Muscle  0.033 E2,B1 

9. ChangePointDifferencei at Left Upper Back Muscle  0.001 E1,E2,B1 

10. ChangePointTimeRatioi at Right Lower Back Muscle  0.026 E1,B1,B2 

11. ChangePointTimeRatioi at Left Lower Back Muscle  0.039 E2,B1,B2 

12. ChangePointTimeRatioi at Right Upper Back Muscle 0.884 E2,B2 

13. ChangePointTimeRatioi at Left Upper Back Muscle 0.092 E2 

NeckBendingProfilei = {(TopNeck it(z) – LowNeck it(z))/NeckLengthi;  t=1, …, Ti} 
SpineBendingProfilei = {(LowNeckit(z) – Hipit(z)) / PersonHeightit;  t=1, …, Ti} 
HipAnglesProfilei = {(3D_Angle(LowNeckit, Hipit, LowerRightLegit) *– (180 – LeftKneeAngleit)*) + (3D_Angle(LowNeckit,Hipit, LowerLeftLegit) *– (180 
– RightKneeAngleit)*);  t=1, …, Ti } The calculations in between two asterisks are done only if the knee is bent forward 

ArmInclinationProfilei = {Savitzky-Golay ((UpperArmit(z) – LowerArmit(z)) / LeftArmLengthit), window size 50, order 1;  t=1, …, Ti} 

NeckLengthi = 3D_Distance (TopNecki, LowNecki) 
LeftKneeAngleit = 3D_Angle(LeftUpperLegit, LeftLowerLegit, LeftFootit) 
RightKneeAngleit = 3D_Angle(RightUpperLegit, RightLowerLegit, RightFootit) 
LeftArmLengthi= 3D_Distance (LeftUpperArmi, LeftLowerArmi) 
PersonHeighti = sum of the rigid segments from anatomical node 24 to anatomical node 4 

ChangePointDifference = (max{mean(EMGProfile(t-60, t-10))-mean(EMGProfile(t+10, t+60)) ;  t=60, …, Ti-60})/max(EMGProfile(0, Ti) 

ChangePointTimeRatio = (argmaxt { mean(EMGProfile(t-60, t-10))-mean(EMGProfile(t+10, t+60)) ;  t=60, …, Ti-60}) / Ti 
where:  Exercise instance i with i=1, … N , N = number of total instances 
            Frame number t with t=1, …, Ti  where Ti is the duration of the instance i;  
            [anatomical node]  = its positional coordinates in the 3D space; [node](z) = its vertical coordinate. (See stick figure) 
M1, E1 and B1are the SVM  models for control vs. CLBP classification using MoCap features, sEMG features and a bimodal features respectively.  
M2, E2 and B2 are the SVM  models for high- vs. low-pain classification using MoCap features, sEMG features and a bimodal features  respectively. 
 

Table 2. Confusion Matrices showing number of instances. 

 M1+ M2 models: Predicted using MoCap features only  

  Control Low-Pain High-Pain 

G
ro

un
d 

T
ru

th
 Control 13 (68.4%) 1 (5.3%) 5 (26.3%) 

Low-Pain 0 (0%) 11 (73.3%) 4 (26.7%) 

High-Pain 0 (0%) 4 (26.7%) 11 (73.3%) 

 E1+ E2 models: Predicted using sEMG features only  

  Control Low-Pain High-Pain 

G
ro

un
d 

T
ru

th
 Control 19 (100%) 0 (0%) 0 (0%) 

Low-Pain 0 (0%) 13 (86.7%) 2 (13.3%) 

High-Pain 2 (13.3%) 4 (26.7%) 9 (60%) 

 B1 + B2 models: Predicted using Bi-modal features 

  Control Low-Pain High-Pain 

G
ro

un
d 

T
ru

th
 Control 17 (89.4%) 1 (5.3%) 1 (5.3%) 

Low-Pain 0 (0%) 13 (86.7%) 2 (13.3%) 

High-Pain 0 (0%) 3 (20%) 12 (80%) 
 

Next, we investigated the use of a hierarchically-structured SVM 
framework with two levels. This was done to create an overall 
three class model: no pain (control instances), low pain and high 

pain. The SVMs M1, E1 and B1 in level 1 of the hierarchy are 
trained to discriminate control instances from CLBP instances. If 
an instance is classed as belonging to the CLBP group, this 
invokes an SVM in level 2 referred to as M2, E2 or B2 trained to 
discriminate between high-pain and low-pain instances. We test 3 
initial feature sets: MoCap only (M-models: features 1-5), sEMG 
only (E-models: 6-13) and bi-modal (B-models: 1-13).  

For each initial set, we apply a backward feature selection process 
to prune indiscriminative features and reduce dimensionality. 
Subject dependent cross-validation (leave-one-subject-out) was 
applied to the SVM at each level of the hierarchy, which included 
an evaluation subject to test three different kernels (linear, 
polynomial and hyperbolic-tangent) as well as grid searching over 
a range of kernel parameters and the SVM regularisation 
parameter C. We obtain the following optimal models: MoCap 
only level 1 (M1) - hyperbolic-tangent kernel with coefficients 
0.01 and -0.01, C = 0.01, MoCap only level 2 (M2) hyperbolic-
tangent kernel with coefficients 10 and -10, C = 10; sEMG only 
level 1 (E1) - linear with C = 1, sEMG only level 1 (E2) - 
hyperbolic-tangent kernel with coefficients 1 and -1, C = 10; bi-
modal level 1 (B1) quadratic kernel with C = 1, bi-modal level 2 
(B2) -hyperbolic-tangent kernel with coefficients 1 and -1 and C 
=1. The third column in Table 1 shows which model utilized the 
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described feature as a result of the backward selection. For the 
MoCap-only experiment, we obtain an overall F1 score of 0.63 
with the high pain class as the positive class and an accuracy of 
0.71. The sEMG-feature-based model gave a F1 score of 0.69 
with an accuracy of 0.84. Using the bi-modal feature set, an F1 
score of 0.80 and an accuracy of 0.86 were obtained. Table 2 
shows the confusion matrices of the classified instances. 

5. DISCUSSION 
This study investigated the use of body movement and muscle 
activity features to detect perceived pain level in a typical exercise 
used in CLBP physical rehabilitation: reaching forward. The 
findings show good performance in separating healthy people 
from CLBP people using bi-modal data or with sEMG only. But 
to discriminate between low and high perceived pain levels, the 
use of bi-modal data yields the optimal performance. However, 
further optimization could include fusion at a decision level which 
could model the underlying distributions per modality in a better 
way. The ANOVA tests on each feature and the backward 
selections show lower back activity and forward flexion angle at 
the hip to be very important and to a lesser extent bending at the 
neck and upper back muscle activity. An understanding of 
important anatomical locations can inform the design of future 
wearable rehabilitation technology. Such outcomes are timely 
since unobtrusive low-cost MoCap systems are becoming more 
accurate and robust. Additionally, new smaller and wearable 
sEMG sensors make muscle activity measurement more 
affordable for home-based rehabilitation. In addition, it would be 
useful to extend this work to other typical exercises to understand 
the generalizability of the features. For CP rehabilitation, the 
robust recognition of painful motion can be used in personalized 
rehabilitation technology [26]. Being able to detect perceived pain 
would allow the tailoring of the rehabilitation technology to the 
psychological and physical skills of the patient as described in [9]. 
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